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In the fourteenth century, the Blessed John Colombini of Siena founded a
religious group known as the Jesuats, which was in no way related to the Jesuits.
The order was approved by Pope Urban V in 1367. The original work of the order
was the care of those stricken by the Black Death, which raged over Europe at the
time, and the burial of the fatally smitten. With the passage of time the Jesuat
order diminished, and in 1606 an attempt at a revival was made. But certain abuses
later crept into the order, with the result that the group now no longer exists. It
seems that the manufacture and sale of distilled liquors, apparently in a manner
unacceptable by Canon Law, along with a growing scarcity of members, led to the
order’s suppression by Pope Clement IX in 1668.

In 1613, only a few years after the attempted revival of the Jesuats, a young
fifteen-year-old Italian boy named Bonaventura Cavalieri was accepted as a
member of the order, and then spent the rest of his life in its service. It is because
of this, and because of the ultimate vanishing of the order and the natural
confusion between Jesuat and Jesuit, that so many major encyclopedias, histories,
and source books erroneously state that Cavalieri was a Jesuit, instead of a Jesuat,
furnishing an excellent example of written histories containing a hidden perpetu-
ated error. It is all too easy for some historian to record an erroneous and
undocumented statement, and then for subsequent historians, leaning on the
earlier work, to repeat the falseshood. Many such erroneous statements have been
widely perpetuated over considerable periods of time.

Bonaventura Cavalieri was born in Milan, Italy, in 1598, studied under Galileo,
and served as a professor of mathematics at the University of Bologna from 1629
until his death in 1647 at the age of forty-nine. Cavalieri was one of the most
influential mathematicians of his time, and the author of a number of works on
trigonometry, geometry, optics, astronomy, and astrology. He was among the first
to recognize the great value of logarithms and was largely responsible for their
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early introduction into Italy. But his greatest contribution to mathematics was a
treatise, Geometria indivisibilibus, published in its first form in 1635, devoted to the
precalculus method of indivisibles—a method that can, like so many things in more
modern mathematics, be traced back to the early Greeks, in this case Democritus
(ca. 410 B.c.) and Archimedes (ca. 287-212 B.c.). It is quite likely that it was the
attempts at integration made by Kepler that directly motivated Cavalieri. At any
rate, the publishing of Cavalieri’s Geometria indivisibilibus in 1635 marks a great
moment in mathematics.

Cavalieri’s treatise on the method of indivisibles is voluable and not clearly
written, and it is not easy to learn from it precisely what Cavalieri meant by an
“indivisible.” It seems that an indivisible of a given planar piece is a chord of the
piece, and a planar piece can be considered as made up of an infinite parallel set
of such indivisibles. Similarly, it seems that an indivisible of a given solid is a
planar section of that solid, and a solid can be considered as made up of an infinite
parallel set of this kind of indivisible. Now, Cavalieri argued, if we slide each
member of a parallel set of indivisibles of some planar piece along its own axis, so
that the endpoints of the indivisibles still trace a continuous boundary, then the
area of the new planar piece so formed is the same as that of the original planar
piece, inasmuch as the two pieces are made up of the same indivisibles. A similar
sliding of the members of a parallel set of indivisibles of a given solid will yield
another solid having the same volume as the original one. (This last result can be
strikingly illustrated by taking a vertical stack of cards and then pushing the sides
of the stack into curved surfaces; the volume of the disarranged stack is the same
as that of the original stack.) These results give the so-called Cavalieri principles:

1. If two planar pieces are included between a pair of parallel lines, and if the
lengths of the two segments cut by them on any line parallel to the including lines are
always equal, then the areas of the two planar pieces are also equal.

2. If two solids are included between a pair of parallel planes, and if the areas of
the two sections cut by them on any plane parallel to the including planes are always
equal, then the volumes of the two solids are also equal.

Cavalieri’s hazy conception of indivisibles, as sort of atomic parts of a figure, led
to much discussion and serious criticism by some students of the subject, particu-
larly by the Swiss goldsmith and mathematician Paul Guldin (1577-1642). Cavalieri
recast his treatment in the vain hope of meeting these objections. The French
geometer and physicist Gilles Persone de Roberval (1602-1675) ably employed the
method and claimed to be an independent inventor of it. The method, or some
process very like it, was effectively used by Evangelista Torricelli (1608-1647),
Pierre de Fermat (1601?-1665), Blaise Pascal (1623-1662), Grégoire de Saint-
Vincent (1584-1667), Isaac Barrow (1630-1677), and others. In the course of the
work of these men, results were reached which are equivalent to performing a
number of integrations.

The assumption and then consistent use of Cavalieri’s second principle can
greatly simplify the derivation of many of the volume formulas encountered in a
beginning treatment of solid geometry. This procedure has been adopted by a
number of textbook writers, and has been advocated on pedagogical grounds. For
example, in deriving the familiar formula for the volume of a tetrahedron (V' =
Bh/3), the sticky part is first to show that any two tetrahedra having equivalent
bases and equal altitudes on those bases have equal volumes. The inherent
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difficulty here is reflected in all treatments of solid geometry from Euclid’s
Elements on. With Cavalieri’s second principle, however, the difficulty simply melts
away.

Accepting Cavalieri’s principles as intuitively evident, one can solve many
problems in mensuration that normally require the more advanced techniques of
the calculus. Let us define two planar pieces that can be placed so that they cut off
equal segments on each member of a family of parallel lines, or two solids that can
be placed so that they intersect equiareal sections on each member of a family of
parallel planes, to be Cavalieri congruent. Two figures that are Cavalieri congruent
have, of course, equal areas (in the one case) or equal volumes (in the other case).
To find the unknown area of some planar piece, or the unknown volume of some
solid, one tries to find a comparison figure of easily found area or volume that is
Cavalieri congruent to the given figure. It often requires skill to devise an
appropriate comparison figure for a given situation. Well known, for example, are
appropriate comparison solids for finding the volume of a sphere and then the
volume of a spherical ring. In the first case one shows that a hemisphere of radius
r is Cavalieri congruent to a circular cylinder of radius and altitude r, from the top

of which a circular cone of radius and altitude » has been removed. In the second
case, one shows that a spherical ring obtained by removing from a solid sphere of
radius 7 a cylindrical boring of radius b coaxial with the polar axis of the sphere is
Cavalieri congruent to a sphere of diameter equal to the altitude of the spherical
ring. In this latter case, it follows that all spherical rings of the same altitude have
the same volume, irrespective of the radii of the rings. By devising appropriate
comparison solids one can find expressions for the volumes of a hoof (the figure
formed by an oblique plane passing through the center of the base of a right
circular cylinder), a Steinmetz solid (the solid common to two right circular
cylinders of equal radii and having their axes intersecting perpendicularly), a forus
and many other interesting solids.

The purpose of this article, however, is not to find expressions for certain areas
and volumes by use of Cavalieri’s principles, but rather to prove two theorems
about Cavalieri congruence that at first encounter scarcely seem to be true. It is
difficult to believe that a long shallow triangle with a base of a mile length can be
Cavalieri congruent to, say, an equilateral triangle of the same area. Nevertheless,
we will prove that any two triangles of the same area are Cavalieri congruent. Again,
since it can easily be shown that there cannot exist a polygon to which a given
circle is Cavalieri congruent, it is difficult to believe that there exists a polyhedron
to which a given sphere is Cavalieri congruent. A sphere is so round, and a
polyhedron is so angular and made up of nothing but planes! Nevertheless, we will
prove that there exists a polyhedron (actually a tetrahedron) to which a given sphere
is Cavalieri congruent. We shall give two different proofs of the first theorem.

Theorem 1. Any two triangles of the same area are Cavalieri congruent.

First Proof. Let ABC and A'B'C’ be the two triangles, with corresponding sides
a,b,c, and a',b’,c'. We consider three mutually exclusive and exhaustive cases.
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Case 1. (the two triangles have a side of one equal to a side of the other, say
a=a).

Place the two triangles so that a and a’ lic on a line u, with 4 and 4’ on the
same side of u (see Figure 1). Since the two triangles have the same area, 44’ is
parallel to u. Etc.

Case 2. (the sides a and a’, b and b’, ¢ and ¢’ are related by inequalities, not
all of the same sense, say a >a', b <b’).

Let cevians x and x' through C and C’ divide ¢ and ¢’ similarly (see Figure 2).
When x =a, then x/x'=a/a’ > 1. When x =b, then x/x' =b/b" < 1. Therefore,
by the intermediate-value theorem, somewhere between a and b there exists a
cevian v such that v /v’ = 1.

Place the two triangles (see Figure 3) so that v and v’ lie on a line u, with
vertices A and A’ on the same side of u. Since the two given triangles have the
same area, so do the two pairs of corresponding subtriangles, and 44’ and BB’ are
parallel to u. Etc.

Case 3. (the sides a and a',b and b’,c and ¢’ are related by inequalities, all of
the same sense, say a <a', b <b’, c <c').

Let m' (see Figure 4) be an interior altitude of triangle A'B'C’, say it is through
vertex C', and let cevian m through C be such that m and m' divide ¢ and ¢’
similarly. Now m > m’, since m > altitude on ¢ > m’. Let cevians x and x’ through
C and C' divide ¢ and ¢’ similarly. When x =m, then x/x'=m/m’ > 1. When

Figure 3
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Figure 4

x=b, then x/x'=b/b' < 1. Therefore, by the intermediate-value theorem, some-
where between m and b there exists a cevian v such that v /v’ = 1.

Place the two triangles (see Figure 5) so that v and v’ lie on a line u, with
vertices 4 and A’ on the same side of u. Since the two given triangles have the
same area, so do the two pairs of corresponding subtriangles, and A4’ and BB' are
parallel to u. Etc.

The above proof is a nonconstructive existence proof. That is, though it proves
there exists a positioning of the two triangles that establishes their Cavalieri
congruence, it does not (except in Case 1) inform us precisely how to effect the
desired positioning, for we are not told how to construct the two equal cevians v
and v'. We now offer an alternative proof which is constructive.

Theorem 1. Any two triangles of the same area are Cavalieri congruent.

Second Proof. If the two triangles ABC and A'B'C' have a side of one equal to a
side of the other, we position the two triangles as in Case 1 of our first proof. If the
two triangles do not have a side of one equal to a side of the other, first place the
two triangles as indicated in Figure 6, where 4 and A’ coincide and BC is parallel
to B'C'. There is no loss of generality in assuming BC < B'C".

Let BB’ and CC' intersect in D, and draw the circle on DA as diameter to cut
the line midway between BC and B'C’' in M and N. Select either of these two
points, say N, and draw DN to cut BC in L and B'C' in L'. Now LC/L'C'=
BC/B'C', whence L and L' divide BC and B'C' similarly. Also, since LN = NL'
and angle DNA is a right angle, it follows that AL =A'L’'. Thus AL and A'L' are
a pair of equal cevians in the two triangles which divide BC and B'C’ similarly. We
now position triangles ABC and A'B'C’ so that AL and A'L’ lie on a line u, with
vertices C and C’ on the same side of u. Then BB’ and CC’ will be parallel to u,
and the two triangles are in a position that establishes their Cavalieri congruence.
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Figure 5
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Figure 6

From either of the above proofs of Theorem 1, it is clear that in general two
equiareal triangles are Cavalieri congruent in a number of different ways.
We now prove our second theorem; the proof will be a constructive one.

Theorem 2. There exists a tetrahedron to which a given sphere is Cavalieri congru-
ent.

Proof. Denote the radius of the given sphere by r. In the planes tangent to the
sphere at its north and south poles, draw (see Figure 7) two line segments AB and
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Figure 7
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CD perpendicular to one another, each of length 2ry/m and having the line
segment joining their midpoints as a common perpendicular.

Form the tetrahedron ABCD. The equatorial plane of the sphere cuts the
tetrahedron in a square of side r/m. Let a plane parallel to the equatorial plane
and at a distance x from it cut the sphere in a circle and the tetrahedron in a
rectangle of sides u and v, where u is parallel to AB and v is parallel to CD.
From the figure we see that the circular section of the sphere has area w(r? —x?2).
We also see, from similar triangles, that

u r+x v r—x

wWmr o wWmr o

whence

uw=m(r+x)(r—x)=m(r*—x?).

It follows that the sphere and the tetrahedron are Cavalieri congruent.
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Contributed by Dan Kalman, Aerospace Corp.
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