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Most calculus students have encountered the problem of finding the maximum
volume of a box that is constructed from a rectangular piece of cardboard by
cutting equal squares from each corner and folding up the sides. Have you ever
asked your students to actually construct such a box? I have. The students soon
discover that the most practical part of this “application of calculus™ is the fact that
it opens the door to more practical methods of construction. To begin with,
removing the corners is ridiculous. If you just cut along one side of each square and
use the squares to reinforce the sides, the result is a much stronger box. Another
thing they notice, with a little gentle persuasion, is that a box without a top is not
very useful. This observation gives me a chance to suggest the construction method
shown in Figure 1.
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Figure 1.

If you cut along the solid lines and fold along the dotted lines, four well-placed
staples will secure a fairly useable box. My students have dubbed this one the Pizza
Box.
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With the no-top construction, cutting out 7 by T squares from the corners of a
rectangle with length / and width w (w < [), the volume is given by

V(Ty=T(l—-2T)w—2T)
for T < w/2. With the Pizza Box construction, the volume is given by

V(T)=T(/2~ T)(w—2T)=T(—-2T)w—2T)/2 for T<w/2.

Therefore, for any value of 7, the volume is half as large using the Pizza Box
method, and the maximum occurs at the same value of T in each case.

With a little more prodding, some students will come to the conclusion that
restricting the shape of the rectangular piece of cardboard limits the maximum
volume of the box. They also can see that this is not a reasonable “real world”
restriction. To allow variable dimensions for the rectangle and variable corner sizes
would usually require the calculus of several variables. Since this is not available to
students when I want to cover this topic, I suggest the following approach.

Suppose 4 square inches of cardboard is used to construct a box using the Pizza
method. Fixing the height at T inches, find the dimensions of the rectangle that will
maximize the box’s volume.

Taking w = A /1 in Figure 1, we have

v =T(G-T)(1-2T).

Then V'(I)=0 when /=4 . The cardboard’s required dimensions are
therefore / = w =4 . Using the Y4 by y4 cardboard, we want to find the height T
that will maximize this volume. Thus, we begin with

V(T)=T(4V4 —T)(V4 - 2T).

Then V/(T)=0 for T=y4 /6 and the maximum volume of the Pizza Box is
V pizza = A3/2/21.

For classroom development, use 4 = 144 square inches because it gives a nice
maximum volume of 64 cubic inches when /=w =12 and T = 2.

By the time we have solved the Pizza Box problem, some of the students will
usually have discovered another commonly used construction method. This method,
dubbed the Popcorn Box, is shown in Figure 2.

When students first look at this method, they usually choose a box with a square
horizontal cross section and the 12 by 12 piece of cardboard that worked for the
Pizza Box. Without calculus, they discover that this produces 81 cubic inches of
volume—quite an improvement over the previous maximum of 64 cubic inches.

Next, they usually try one of two methods: either they keep the 12 by 12 piece of
cardboard and allow the width to vary, or they keep the square base on the box and
allow the dimensions of the 144 square inch cardboard to vary. Surprisingly, both

methods produce the same maximum volume, 483 ~ 83.14. Is this true in general?
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Figure 2.

To check this out for the general case, assume that the cardboard has area 4
square inches. For / = w =4 , we have

V(T)=T(JA -T)(4V4 - T)

and the maximum volume occurs for 7 = (3 -3 )\/Z /6. For the second alterna-
tive, let 7= //4 (the box has a square base) giving

V()= (/4 (4-1)

and maximum volume when /=2y4/3 =4w/3. In both cases, the maximum
volume is ¥ =13 43/2/36.

The volume of 83.14 isn’t much better than the volume of 81 that was obtained
without using any calculus. However, when both the shape of the original piece of
cardboard and the width T of the box are allowed to vary, the improvement is more
dramatic.
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To see this, assume again that the area of the cardboard is A square inches. As
with the Pizza Box, first fix the box’s width at T and let the length of the cardboard
vary. This gives

vih=T(G-T)4-T)
and V'(l)=0 when /=124 . Using this Y24 by 24 /2 cardboard (recall

that the area was fixed at 4 square inches), allow the box width 7 to vary. Under
these conditions,

2

V(T)= T(-f27 —T)( 4 —T) = T(l{ﬂ—T)
2 24 2

and V'(T)=0 when T =124 /6. Thus, the Popcorn Box has maximum volume

v, =12 4%?/27. It is now clear that ¥, cor, is approximately 41% larger than

popcorn

12za *

" After spending a class period and a daily assignment on box problems, I like to
include a box problem on the next unit test. Usually I give them a specific / by w
rectangle, tell them which method of construction to use, and ask them to find the
maximum volume. As a test question, I prefer integers for / and w, and rational
values for the optimal box dimensions. The following developments show how to
choose / and w to accomplish this for the Pizza Box and then for the Popcorn Box.

From Figure 1, we have

V(T)=T(/2— T)w—2T)=(WT/2)— I+ w)T*+2T">.
Therefore, V'(T) = 0 when

T=(l+wi\/12—lw+w2)/6.

The correct T value will be rational when /2 — lw + w? is a perfect square. Choosing
correct / and w values to accomplish this result is an interesting problem whose
solution has been published by the author in an earlier paper “Quasi-Pythagorean
Triples for an Oblique Triangle,” the TYCMJ 8 (1977), 152-155. The problem is
related to the “ambiguous case” triangle pictured in Figure 3.
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Figure 3.

The cosine law gives a* = I — lw + w? for w = w, or w = w,. Direct substitution
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shows that a = m? + mn + n? when

I=2mn+m? w =m?>—n?> and w,=2mn+ n?
where m > n. It is more difficult to show that all solutions are generated by
multiples of these when m and n are relatively prime and do not differ by a multiple
of three. The net result is that for m > n, the pairs

(hw)=@2mn+ m*2mn+n* and (L,w)=2mn+ n’ ,m*— n?

generate all the Pizza Box problems one needs.
For the Popcorn Box, referring to Figure 2, we have

V(T)=T(/2-T)w—T)=(WwT/2)—(I/2+w)T*+ T°.
Thus, V'(T) =0 when

T=(I+2w V12 = 2w + 4w? )/6-

In this case, /> — I(2w) + (2w)? needs to be a perfect square. This is the same
problem as above with w replaced by 2w. It follows that (/,2w) = 2mn + m?,
2mn + n?) and (/,2w) = 2mn + m?, m? — n?) generate the desired dimensions.

This article would have ended here if I
had not recently purchased a three way
light bulb. It was packaged in an interest-
ing box whose construction is indicated in
Figure 4.

The horizontal cross-section of this box
is hexagonal, and the ends are folded over
just enough to reach the center. This pro-
vided a new direction to go in search of a
better box.

I assigned an extra credit problem to
my class to find the maximum volume
using this construction method and 144
square inches of cardboard. Nobody
solved the problem, but I’ll try again next
semester. In my solution, the volume is
computed by multiplying the area of six
equilateral triangles by the height. This
gives the formula
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Figure 4

V(1) =6(1/2)(1/6)(h3 /12)(144/1— 13 /6).

Then V’(/) = 0 when [ = 4 4108, and the maximum volume is 48 12 ~ 89.34.

Many questions could be asked at this point. If we retain the 4 square inch
rectangular piece of cardboard, what is the maximum volume possible using the
hexagonal cross section? If more sides are used, will the maximum volume increase?
Is some number of sides optimum, or does some smooth curve eventually produce
the “best” box?

These questions can be answered under the following restrictions: The polygonal
cross-section must be equiangular and have 2n sides for some natural number
n > 1; each of 2n — 2 sides have length y and the remaining 2 sides have length
(1/2) — (n — 1)y, where [ is the length of the original rectangle. Thus, in the
cross-section (see Figure 5), each of the 2n — 2 isosceles triangles has its vertex angle
equal to 7 /n and its altitude of length (y/2)cot(w/2n).
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Figure 5.
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For the case where 4 = 144, the box has volume
V= (y/2)(cot(w/2n))(I — ny)(144/1 — y cot(m /2n)).

To see this, observe first that the last factor is the height of the box. The cross
sectional area is seen when you place the two trapezoids and the 2n — 2 triangles
side by side, with half of the triangles and one trapezoid in the inverted position.
This gives a parallelogram with length / — ny and altitude (y/2)cot(w /2n). Taking
partial derivatives with respect to / and y, we find that maximum volume

V = 128y/cot(7/2n) /Vn
occurs when / = 12\/;\/tan(vr/2n) and y = 4y/cot(7/2n) /\n .

The hexagonal cross section (n = 3) produces a maximum volume of 128 427
=~ 97.26 cubic inches, while an octagonal cross section (n = 4) produces a maximum
volume of 641/y2 + 1 ~99.44 cubic inches.

The preceding’' remarks show the maximum volume ¥V is a function of n.
Since V’'(n) >0, we see that V is an increasing function. Rewriting V =

128v/cot(m/2n) /Vn as

B 7/2n 2cos(m/2n)
V= 128\/sin('ﬂ/2n) . T ’

we see that lim, , V' = 128y2/7 ~102.13. If we could construct such a box with
infinitely many sides, it would have a cross-section in the form of a rectangle with a

semicircle on each end. The radius of the semicircles would be 2y2/7, the
dimensions of the rectangle would be 4y2/7 and 2y /2, and the height would be

8y2/7.

It is important that students bring a certain ragamuffin,
barefoot irreverence to their studies; they are not here to
worship what is known, but to question it.

Jacob Bronowski 1908-1974
The Ascent of Man 1975 (London: BBC)
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