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It is well known (and repeatedly taught) that a real number is rational if and only if
it can be written as an infinite repeating decimal. That the decimal representation
is not necessarily unique is also well known. However, if we do not allow those
representations with repeating zeroes (often called terminating), the representations
are unique. It is also true that there is a one-to-one correspondence between the
non-zero real numbers and all non-terminating decimals (repeating or not).
Strangely, zero is the only integer which cannot be written with repeating nines.

While discussing these ideas and the- properties of real numbers in an in-
termediate algebra class, I decided to point out why we would assume the field
properties of the real numbers. We had proved that multiplication and addition
were closed operations on the rational numbers. Why shouldn’t we at least do this
much for real numbers? Since the only representations available to us of- a
computational nature were the infinite decimals (the number line is not very
computational and Dedekind cuts were three miles over their heads), I decided to
give the class some idea of the difficulties encountered in defining and performing
addition and multiplication of real numbers. To this end, I asked if they could add
or multiply rational numbers using only the decimal representations and their
knowledge of integers.

This can be a shaking experience for some students who are very confident they
have mastered “simple arithmetic” like adding and multiplying. It is well, then, to
help them discover how to add repeating decimals. Also, to keep things simple, we
considered only positive numbers. My class had already seen how to convert from
fractions to decimals and from repeating decimals to fractions. They were aware
that terminating decimals could be written with repeating nines. We used the
notation of underscoring a block of digits which repeat. For example:
1/3=.3=.33=.33333.

We looked at some examples which gave them no trouble: 3+.4=1/3+4/9
=7/9 =.7 Then some a little more difficult:

() 6+.5=6/9+5/9=11/9=12  (not 1.1)
(b) 73 +.58=73/99 +58/99=131/99 =132  (not 1.31)

(c) 1.35+2.57 = 122/90 + 232/90 = 354/90 = 3.93  (not 3.92)

(d) 1.03 +2.7=1.03 + 2.77 = 93/90 + 250/90 = 343 /90 = 3.81  (not 3.80)

The students soon saw that if we must “carry” beyond the block of digits which
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repeats, we must add one to the block which then repeats in the sum. Note that we
are studying a binary operation so we need only concern ourselves with adding two
numbers at a time. Thus, the only number we ever carry is one! That should give
you some idea how to extend this discussion to adding more than two numbers.
In the previous examples, the length of the blocks of the numbers we were

adding was always the same. So, consider now: .054 +.98565

=.05454545454 + 978565985659

= 1.04020531114.

Reason: 5454545454 + 8565985659 = 14020531113

ten digits ten digits ten digits

Notice we must first get the repeating blocks to start at the same place and also
have them the same length.

An obvious theorem: If A has repeating blocks n digits in length and B has
repeating blocks m digits in length then A + B has repeating blocks L.C.M. (n, m)
digits in length.

With the previous discussion one can easily formulate an algorithm for adding
repeating decimals. Here’s how it can be done:

Instructions: Example:
(A) Write the problem. (A) 2.70 584
+6.91749

(B) Rewrite the problem so that both have (B) 2.70 584584
repeating blocks of the same length. +6.917 494949
(See “obvious theorem.”)

(C) Rewrite problem again so that repeating ©) 2.705 845845
blocks ““start” at same position. +6.917 494949

(D) Add as you ordinarily would terminating (D-F) 9.623340794
decimals add 1 to the last digit if and +1
only if you “carried” past the block 9,623 340795

which repeats.

(E) Underscore the last digits so that the
number of underscored digits is the
same as in part (B).

(F) Simplify if possible.

Now consider some multiplication problems;

(A) 3x4=3/9%x4/9=12/81=.148
(B) 1Xx.2=1/9%x2/9=2/81=.024691358!!

Think your students will find an algorithm for multiplication? Mine didn’t. Let us
find one. Using the associative law and the commutative law:

(A) (3(4) = G)A)(1/9) = (12)(1/9) = (1210 — 1) 2
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(B) (1)(2)=(D)1/9? = 2)(1/9 = )10~ 1)~
©  (3D(54) = (BT)(54)(1/99)° = 1998(10° — 1)~

(D) (.102)(.102) = (102,/999)(101/990) = (102102,/999999)(1020201 /9999990)

=(102102)(1020201)(10¢ — 1)~%(10)~"
= (104164562502)(10° — 1)~%(10)" !,

or better yet

(:102)(.102) = (.102)(1 +.02)(10) "' = [.102 + (.102)(.02)}(10) "
and  (.102)(.02) =(102,/999)(2,/99) = (102102 /999999)(020202 /999999)
=(102102)(20202)(10° — 1)~ % = 2062664604(10° — 1) 2.

Thus to do multiplication of repeating decimals we must be able to multiply
integers, find integer multiples of repeating decimals, and be able to evaluate the

form (10" — 1)72.

Let us see how we can multiply an integer by a repeating decimal. Here are two

examples:

(A) 2358 X.67=(2358)(67)(.01)
= (157986)(.01)
=01010.10
+ 0505.05
+ 070.70
+  09.09
+ 0.80
+ .06
= 01595.80

+.01

1595.81

(since 1 was carried past the block)

(B) %,10% x.01= 010101 ... 0101 x.01
198 digits

=01010101 . . .

+010101 . ..

+
+

+ 4+ + +

0101 ...

01...

010101.01
010101.01
010101.01
010101.01

010101.01
0101.01
01.01

0L

i=98
i=97
i=96
i=95

i=3
i=2
i=1
i=0

01020304 . . . 969798.99 = 0102030405 . . . 969799.

There is a reason for doing the previous rather messy example. We need to be able

to evaluate (10" — 1)72. Let us do this for n = 2.
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(102 = 1) %= (1/99)>= (. 01Y2= (.01)(1/99) =. 01 x A0I0L.. . 01

=27999999 ... 99
§ 10% 196 digits
<o 01020304 . . . 969799
=.01x — = =.0001020304 . . . 969799
S ooy £ 9999999999 . . . 999999
i=0( 198 digits

In a similar manner one may show the following:
(10" — l)_2 = (1/9)* = (. 1)* =. 012345679
(10° - l)_2 =(1/99)>=(.01)*=.00010203 . ..9596 97 99

(10° — 1) > = (1/999)> = (. 001 = . 000 001 002 . ... 996 997 999
(10 — 1) "% = (1/9999)* = (. 0001)? =. 0000 0001 0002 . .. . 9996 9997 9999 .

So, for (10" — 1)~2, count from zero to 10" —2 using n digits for each counting

number (and zero) and then add one to the result. This is the block which repeats.
Here is a way to multiply (10" — 1)~2 by any natural number less than 10".

Write: 012345...(10"— 1) but use » digits for each count, supplying zeroes

when necessary. To multiply (10" — 1)~2 by m, subtract m + 1 from 10" then circle

this number (all » digits).

(a) Write the first uncircled number (all » digits).

(b) Count the next m uncircled numbers (n digits per count), write the number on

which you land.

() Repeat (b), returning to the beginning when necessary (in a cyclic manner).

(d) Stop when the number immediately following the circled number appears.

When you have finished writing, you have the block which repeats.

Examples:
7X(10—1)"% Write: 0123456789 10— (7+1)=2
(@ 0
(b) 08
(c) 086
(c) 0864
(c) 08641
(c)(c)(c)(d) 086419753

7X (10— l)_2= 7 %.012345679 =. 086419753  -Neat, huh?
33 X (10> — 1)~2 Write (or think): 00 01 02 03 - - - 96 97 98 99 Circle 66

(a) 00
(b) 0033
(©)&(d) 0033 67

33 x (10> — 1)_2= 33 %. 00010203 . . . 969799 =. 003367
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Now let’s multiply 23.012 X .01235.
23.012 x.012 35 = (230. 12)(12. 35)(10~%).
And  (230.12)(12.35) = (230)(12) + (230)(. 35) + (12)(. 12) + (. 12)(. 35)
= (230)(12) + (230)(35)(. O1) + (12)(12)(- O1) + (12)(35)(.01)?
= 2760 + (8050)(.01) + (144)(.01) + (420)(.0_1)2.
8050 < .01 = 080.80

+ a 1 was carried

144x.01 = 01.01
0.40
04

1.45

420 X (01)2 = 10 X 42 X (.01)?
=10x.00428527...1558
= (10 x.004285277012549739822467095194367921640648913376186103458830731558)

So  23.012 X.01235 =(2760 + 81.31 + 1.45 +.0428527 . . . 15580)(10~%)
=.28428105 .. .56

The last part is not easy but it’s merely an addition problem!!!!

Something which is possibly worth mentioning: the algorithms presented do not
depend on the base of the numeration system. For example: The algorithm for
finding (10" — 1)”2 can be expressed as

10"~2
10700 =2 % 107" | + 1
i=0

=

(10" - 1)~ *=

lOﬂ(lO"— 1) _ 1

It can be shown that the formula is true if we replace 10 with any natural number
greater than one. Any readers interested in the proof of this are invited to write me.
I would be happy to supply it.

I would not be so happy to supply a proof of the algorithm for multiplying a
natural number by (10" — 1)72. I have proved it to myself but the proof is in no
way elegant. This algorithm too can be used with any base numeration system.

A problem which I find extremely challenging (if not defeating) is: Given a
repeating decimal, how can we find its multiplicative inverse? You may wish to
work on that.
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