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1. Introduction. Most college courses in linear algebra overwhelm students,
for the first time, with abstractions. They have to learn definitions of ‘linear
independence,” “‘basis,” ‘‘dimension,” ‘“‘invariant subspace,” etc., and their
instructors rarely have time to present applications and to demonstrate the power
of these methods.

A gentler path to linear algebra would begin with two dimensions. The ideal
space, for this purpose, is the ordinary Euclidean plane, and the fruits of this labor
are theorems in plane geometry; the study of bi-linear and quadratic forms can be
applied to conic sections. In addition to preparing people for linear algebra in n
dimensions, such a course would have the virtue of teaching all the content usually
found in an analytic geometry course and in many elementary synthetic geometry
courses.

There are many other uses of linear algebra. I want to present one of these in
this article. Only the tools of the two-dimensional trade will be needed.

We shall use linear algebra to study sequences defined by linear recursion re-
lations. We begin by describing some examples.

2. Examples. (i) Assume rabbits breed in such a way that, when a pair
reaches the age of 2 months, it begets another pair every month. Assume, moreover,
that our rabbits are immortal. If a single newborn pair of ancestor rabbits begins
this breeding process, how many pairs of rabbits will there be in the nth month?

During the first month, there is 1 pair; during the second, still 1 pair; during
the third, 2 pairs: the ancestor and one offspring pair. During the third month,
there will be 3 pairs (the ancestor, last month’s offspring, and a new offspring
produced by the ancestors). We observe that during the nth month, we have all
pairs present during the (n — 1)st month and, in addition, a new offspring from
each pair that existed during the (n — 2)nd month. Thus, denoting the number of
pairs present during the nth month by f,, we find that

Jo = fa—z + fa1, n=34>5.... 1

Equation (1) gives each term of the sequence, from the third on, as a linear
combination of its predecessors. Such a formula is called a linear recursion relation.



Together with the information fi = f; = 1, it enables us to find all subsequent
terms f; (¢ = 3,4, ...) of this sequence, called the Fibonacei sequence, and appear-
ing in a number of phenomena.?

The methods we shall describe will yield a formula for f, directly*, so that the
fifor ¢ < n need not be computed first.

(ii) As a second example, consider two gamblers, @ and ®, playing the follow-
ing game: A coin is tossed. If it lands head up, @ gets a dollar from ®; if it lands
tail up, @ loses a dollar to ®. The gamblers start with d dollars of which @ has ¢
and ® has d-i. The game ends when one of the players runs out of money; that is,
when he is ruined. We wish to find the probability a; that @ is ruined if he starts
with ¢ dollars, forz = 0, 1,2, ..., d.

If the coin is such that the probability of heads is p, then that of tails is ¢ =
1 — p. If the coin is fair, p = ¢ = 1/2.

Now, suppose @ has ¢ dollars. One of two (mutually exclusive) things must
happen at the next toss:

(a) the coin turns up heads, so @ will have 7 + 1 dollars,
(b) the coin turns up tails, so @ will have ¢ — 1 dollars.
Thus, the probability of @’s ruin when he has 7 dollars is the sum of

(a) the probability of {heads, followed by @’s ruin if he has (¢ + 1) dollars} =

Py
and
(b) the probability of {tails, followed by @’s ruin if he has (z — 1) dollars} =
Q1.
Thus

a; = Phiy1 + qai, 1=1,2,3,...,d — 1.** 2)

Moreover, ay = 1 because when @ has no money, his ruin is a certainty; and ag = 0,
because then ® has been ruined, and @ cannot be ruined.

Let us solve (2) for a;y; in terms of its two predecessors, a;—; and a;. We obtain
the linear recursion formula

a1 = —(¢/pP)aia+ 1/pla;, =1,2,...,d— 1 3)

Using (3), the values gy = 1, a; = 0, and the given probabilities p, ¢ (with p +
q = 1), we wish to calculate a; in terms of the total capital d and @’s initial share of
it, g %%k

1See, for example, H. S. M. Coxeter, Introduction to Geometry, Wiley, New York, 1961, p. 165.

* This was done also by Paul Garrett in Matriz Eigenvalues: Characteristic Values, the Mathe-
matics Student Journal, May 1971, p. 4; he was then a high school student.

** For a more detailed derivation of (3), see, e.g., The Elements of Probability by Simeon M. Berman,
Addison-Wesley, 1969, pp. 77-84.

***In the case p = ¢ = %, this problem was solved in Mathematical Gems by R. Honsberger,
Dolciani Mathematical Expositions, vol. 1, MAA, 1973, pp. 128-130.



(iii) Our third example does not involve recursion relations from ‘‘real life’’;
instead they were man-made for a problem of the 1973 U.S.A. Mathematical
Olympiad.* We shall sketch its solution later on in this article.

The problem defines two sequences {x,} and {y.} of integers by

xo=l,x1=1 x,.+1=2x,,_1+x,. n=1,2,... (4)
vo=1y="17 Ynp1 = 3Yn—1 + 2Yn n 1,2, ... 5)

and asks the student to prove that, except for the term ‘‘1”’, the two sequences have
no term in common.

It

3. General principles. The central feature of our examples is a recursion
formula of the form

Tyt = QT + b2, n=1,2,... (6)

where a, b are given constants. We view each pair of consecutive terms of the se-
quence Zo, L1, T2, ... as components of a two-dimensional vector:

o 1 Tn
Xo = ) X1 = )y eeey X, = y ooy (7)
x1 T2, Lnt1,
and we use the recursion formula to determine a linear transformation 7' which

maps each vector into the next: TX; = X;;;. This transformation is given by the
coefficient matrix of the pair of equations

Tn = Zn
Tapl = QTp—1 + bTs .
This is equivalent to the single vector equation

Tn 01 Zn—1
= or X,, = TXn_l, (8)
Tnt1 a b Tn

where T = (© 1}). We obtain the desired sequence by iterating T':
X1 =TX0, Xo=TX1 = T(TX,) = TX,, ..., X0 = T"X,, .... 9)

We see that X, is expressed directly in terms of X, and the nth power of the matrix
T. If we actually had to compute successive powers T2, T%, ... of the matrix T,
we would be no better off than we were when we computed successive terms z;
of the sequence via the recursion formula. It is at this point that linear algebra
comes to the rescue with a simple way of finding 7»X,, provided we express X, as
linear combination of eigenvectors of T. We recall that an eigenvector E of T is a
vector transformed by T into a multiple of itself:

TE = \E; (10)

* The Second USA Mathematical Olympiad by S. L. Greitzer, the Mathematics Teacher, Feb.
1974, p. 115, contains statements and brief solutions to all five problems of this contest.



the eigenvalue \ is the factor by which T stretches or shrinks E. Consequently,
T°E = T(TE) = T(\E) = \TE = NE,

If we can find two linearly independent eigenvectors E® and E® of T, then we can
express any vector X, in the form

Xo = al® + c,E®
and compute
Xo = T"Xo = aM"ED + c\"ED, (11)

where A1, A2 are the eigenvalues corresponding to the eigenvectors E®, E®, re-
spectively. Formula (11) allows us to compute X, directly, without first having to
find X; for 7+ < n. In addition, it furnishes much information about our series for
large n.

To find eigenvalues N and eigenvectors E, we must solve equation (10) or,
equivalently,

TE — \E = (T — \M)E =0, (12)

where I is the identity matrix (; 7). The matrix 7 — A must annihilate E,
but in order to map a non-zero vector into the zero vector, a matrix must be
singular; that is, its determinant must be 0. This requirement leads to the char-
acteristic equation
- 1
| T — M| = =N—-XN—0a=0, (12")
a b—2A\

a quadratic for A with solutions

M=0O+ Vb +40)/2 and N = (b — Vb + 4a)/2,

which are real whenever b2 > —4a and real and distinct whenever b2 > —4a.

Once the eigenvalues are determined, we can find the eigenvectors E® and E®
by solving equation (10) for E using A = A\;, and A = ), respectively. We now apply
these principles to our examples.

4. Application to Example (i). For the Fibonacci sequence, the trans-

formation matrix T":
f n—2 n—1 O 1
— is T = ,
n—1, f n 1 1

fn—l = O'fn—2 + 1'fn—l
fn 1'fn—2 + l'fn—l-

since



[Although this sequence usually “begins” 1, 1,2, 3,5, ... = f1, f, ... so that

()

we may augment it to 1,0, 1, 1,2, ... = @, 1, ..., so that the first two vectors,

00 )

are the basis vectors, and
X,=TXy=F,_, = T+2F, .]

We can now solve the characteristic equation for 7' to obtain its eigenvalues
and eigenvectors, or we can find these directly by solving equation (10). Since
every multiple of an eigenvector is again an eigenvector, we may normalize our
eigenvector (to simplify later computation) to the form E = (§); then equation

(10) becomes
<0 1><6> ( 1 ) )\6)
1 1 1 e+ 1 ()\ ’

1 = e, e+1=N\ (13)

or

By eliminating e, we obtain the characteristic equation \2 — X — 1 = 0 with
solutions

M= (1 + \/5)/2) Ay = (1 - \/5)/27 (14)

M+ A= 1, Mh = —1. (15)

satisfying

To find the eigenvectors, we determine e from (13), and obtain ¢ = A — 1 so that

M—1 N—1
E® = , E® =
1 1

or, in view of the first relation in (15),

— Az -\
EO = ,  EO® = .
1 1

[We note, in passing, that the eigenvectors are orthogonal, i.e., E®+E® = A\ +
1 = —1 4 1 = 0; this is always true of the eigenvectors of a symmetric matrix.]
Next, we express X, as a linear combination of eigenvectors:

1 —01)\2 _ 02)\1
Xo = = EV 4 E® = .
0 a+ e



The coefficients ¢, ¢; satisfy ¢ + ¢ = 0 and —ede — e\ = 1, whence

a=1/M—N) =1/4/5, = —aa = — 1/4/5, and

1 —M"A2 + MA”
X, = T"X, = aMEW® MNE® = —— . 16
0 C1AL + cohe \/5 N o ( )
1" — A2
In view of the second relation in (15), this yields
1- ML — )\Zn-l)
X, = — . an
V5 M — A"

Thus the nth term of the Fibonacci sequence is

_ o |1+ VEY (11— EY
fn—xn+1—\/5— 9 9 . (18)

This is the formula we were seeking.
What other interesting information does equation (16) provide? We re-write
it in the form

and we observe that, since | A | > | A2 | (\ = 1.616, 2 & —.618), the component
of X, in the eigendirection E® dominates, so that X, approaches that direction as
n — . The fact that )\, is negative causes the sequence of vectors X, to oscillate
about the limiting direction E®. Since the direction of a vector is determined by
the ratio of its second to its first component, it follows that

2nd component of X, a1 2nd component of EM
= = r, approaches

1st component of X, Zn 1st component of E®
_1_y
= =N

In other words, the ratio r, of the (n + 1)st to the nth term of the Fibonacei
sequence approaches the limit (1 + +/5)/2 as n — . Successive ratios r, ap-
proach \; alternately from above and below.

5. Application to Example (ii). The transformation matrix in the gam-

bler’s ruin is
0 1
T= ( >’ p+aeg=1;
—q/p 1/p

its characteristic equation is \2 — (1/p)\ + ¢/p = 0 and has discriminant 1/p?
times 1 — 4pg =1 — 4p(1 — p) =1 — 4p + 4p® = (1 — 2p)?, which is never
negative, and vanishes if and only if p = 1/2. Consequently, the eigenvalues



M= (1/2p)[1+ 1 —=2p)]=(10-p)/p=g¢/pand e = (1/2p)[1 — (1 —
2p)] = 1 are always real; they are equal if and only if the tossed coin is fair (p =

g = 1/2). The first eigenvector
1
E® =
e®

e

M
— Y] = ,
_q_—l;_e_ Ae®

p

(1)
E® = )
q/p

must satisfy TE® = MED, or

S
—q/p 1/p/\e® B

so e =\ = ¢/p, and

For the second eigenvector,

1
E® = ,
e®

o®
A2 1
TE® = o | = = = E®
—qte® Nee® e® ’
p

s0e? = 1and E® = (}).
Next, our method calls for the representation of X, as linear combination
of E® and E®, so that we may compute

X, = "X, = T[eEO + E®] = eArE® + o\nE®.

In our previous example both components of the initial vector X, were known and
furnished the pair of equations for determining ¢; and c.. In the present example,
only the first component 2o = ay = 1 of X is known (see p. 4), but we also know
the second component z; = a4 = 0 of X451 (see p. 4), where d is the combined
capital of our gamblers. So this time, we get our pair of equations for ¢, ¢; from the
first component of

1
Xy = ) = BV + E® (19)
11
and the second component of
Ta—1
X4 = = aMTIED + e IE®, (20)
0



using the eigenvalues and eigenvectors found above. These equations for ¢; and ¢, are
l=a+ec
0 = c12¢ + o, wherez = ¢/p = \y,

and yield ¢; = 1/(1 — 29), o = (29)/ (2% — 1).
Consequently

1 2t — zd
X: = cMED 4+ o\ E® = .
1—2¢ 2itl _ pa
The formula for the probability of @’s ruin if @ starts with ¢ dollars is

g BT (¢/p) — (g/p)?
R s 1— (¢/p)¢ '

The value of a; can be directly computed provided the properties of the coin, that
is the probability of heads, is known, and the coin is not fair. If the coin isfair, z =
g/p = 1 and formula (21) cannot be used.

To analyze the probability of @’s ruin with a fair coin, we can proceed in two
ways. We can examine the behavior of a;(2) = (2¢ — 24)/(1 — 24) as z approaches
1, and see if lim,.; a;(2) exists. This is an analytic approach. Alternatively, we can
use the theory of linear algebra to study the transformation matrix 7 = (%, 3})
with the double eigenvalue 1 and with only one eigendirection (}). We shall do
each in turn; both methods work and yield the same result.

We re-write a;(2) in the form

=0,1,2,...,d (21)

@ zd — gt gpla-dla — |
a2 = =
’ zd — 1 z—1

= bi(x)

where ¢ = z7¢;and as 2 — 1, z — 1. Now set f(z) = z@9/eandlet h = 2 — 1
so that

FA+h) =f@) =l f1) =1,

and

lim b;(z) = lim LM =S =f(1) = i—d_—i = lim a:(2). (22)

o1 B0 h 1

Thus for a fair coin, (22) yields the probabilities
d—1 _d—=2

a0=1,a1=—,a»2 —,...,ad_1=—ad=0.

d d d’

Our algebraic method yields the transformation matrix

10



with equal eigenvalues Ay = N2 = 1. All solutions of TE = \E, i.e., of

(-0

are multiples of the vector (}), so we take

()

as our eigenvector. We recall from linear algebra that, if a matrix fails to have a
full set of linearly independent eigenvectors (two in our case), we may introduce a
generalized eigenvector (a vector mapped into a multiple of itself by 7%?). In our
case any vector not in the direction of E would serve; but the most convenient for
our purposes is a vector G for which

TG = G + E; (23)
for then

T"G=TG+TE=G+2E,T°G=G+3E,...,T"G = G + nE,
and lf Xo = ClE —I— CzG, then
X, =T"Xy = ciF + (G + nE) = (a1 + ne) E + G, (24)

still a simple expression. Solving (23) is equivalent to solving (' — I)G = E.
In other words, since we cannot find a vector independent of E annihilated by
T — I, we shall at least find one which is mapped into £ by 7' — I, hence an-
nihilated by (T' — I)% We solve

-1 1 J1 1 J1
(T — G = = =F for G = ;
-1 1 3o 1 ('}

—g1+ g2 =1,9. =1+ g1. Take G = (3). Now the analogues of equations (19)
and (20) are, in view of (24),

Xo=al + C2G, (25)
Xea=T"'Xo=cE+ @+ d—1)E) =[a+ (d— 1)elE + oG. (26)
Again, we determine ¢; and ¢, from the first component of X, and the second of
Xd_li

l=ca+4+ea O=a+@d—1a+2a=ca+ (d+1)c,

soco=(d+ 1)/dyee= —1/dye1 +nee = (d+1— n)/d;

d+1—72 1

Xi=———1--G,

11



and

as in the analytic result.

6. Application to Example (iii). Application of our methods to the
sequences of the Olympiad problem lead to its solution. We shall give only the
broad outlines and leave the details to the interested reader.

The transformation matrices for the series {x;} and {y;} defined by (4) and

(5) are
<0 1>' . (0 1)
T, = and T, = ,
2 1 3 2

respectively. The eigenvalues and corresponding eigenvectors of T, are

M= —1, 1 1
ED = , E® = ,
2, -1 2
and those of T, are
w= —1, 1 1
FO = , F@® = .
ue = 3 —1 3

These lead to the representations

Zo Yo
X, = =1E®W +2E® Y, = = —F® 4 2F®
X1 Y1

T, = 3L (=1)» 4 2717, gy = (—1)F 4 2.3%,

A2

and

Forn =k = 0,2 = yo = 1. To see that x, # y; for all positive integers n and
k, we must show that x, = y, or equivalently,

L3 —2r] = (=) +3(=1)%,

holds only if » = k& = 0. This can easily be demonstrated, for example, by consider-
ing separately the cases: (1) n and k are both even, (2) » is odd and £ is even, (3)
n is even and k is odd, (4) n and k are both odd. Somewhat different solutions are
sketched in the article quoted in the footnote of p. 5.

7. Extension. The methods we have applied here can easily be extended to
treat linear recursion formulas of the form

Tn = OkZnk + **° + G2y + A1Tp1,

12



where each term of a sequence is expressed as a linear combination of its k prede-
cessors. This would lead to a k-dimensional vector space and a k& X k transforma-
tion matrix

ar Q-1 °° Qg a1

8. Generalization. We conclude this article by giving another interpreta-
tion of recursion relations from the point of view of abstract linear algebra. This new
interpretation is suitable also for the study of differential equations with constant
coefficients. We shall sketch it first for recursion relations of the form (6), then give
its analogue for second order differential equations.

To this end, we view sequences i, Tz, ¥, ... as functions F defined on the
positive integers: F:n — a,,n = 1,2,3, ..., or
F(n) = z,. 27

We denote the operation of translation to the left by T'; T is the operator which
maps a sequence i, Tz, T3, ... into its translate s, s, 24, ..., l.e., TF = @ is de-
fined as

Gn) =F(n+1), n=123,.... (28)
T is a linear operator: for any pair of sequences Fi, F, and constants ai, o,
T(a1F1 + 0&2F2) = hoFl + agTFg .

A recursion relation of type (6), Zni2e — a2, — bai1 = 0, can be expressed in
terms of T by

T®F — bTF — oF = (T? — bT — aI)F = 0, (29)

where I is the identity operator. (I maps every sequence into itself.)
Denote by S the set of all solutions of (29). S is the set of all sequences mapped
into 0 by the linear operator

L="T—0bT — al, (30)

so S is a lznear space. The first two terms z; = F (1), 2 = F(2) may be prescribed
arbitrarily; they and the 3 term recursion relation (6) determine all subsequent
terms of a solution sequence uniquely. Thus the linear mapping F — (F (1), F(2))
establishes a one-to-one correspondence between S and the two-dimensional space
of all ordered pairs (F (1), F(2)). The space S is two-dimensional.

Finally, S is translation invariant; that is, 7 maps solutions of (29) into
solutions of (29). This is a consequence of a basic theorem of linear algebra which

13



states: If two operators commute, the null space of one is an invariant subspace of
the other. In our case, let L be the operator (30); an element is in its null space if
LF = 0, i.e., if F solves (29). L commutes with 7 since LT = T% — bT? — oT =
TL. Hence S is an invariant subspace of T': a translate of a solution of (29) is a
solution of (29).
Linear algebra teaches us that the action of a transformation T’ on a vector

space 8§ is best understood if eigenvectors of T are introduced as a basis in S.

Accordingly, we look for elements of S that are mapped by T into multiples of
themselves; i.e., for sequences E for which TE = ME. Let E = {1, 22, ...}; then
TE = {xy, 3, ...} = {Az1, Aze, ...}. Thus

Ty = NZ1, T3 = N2 = N2y, ... & = Nl
The recursion relation requires that
Tnyz — bTpyp1 — ax, = 0, Le., \Hg; — bAray — oAl = 0

whence ANl (M2 — BN —a) = 0.
The first factor vanishes only for the sequence (0, 0, « - +) which is indeed a solution
of (29). The other factor vanishes for the roots A\ and Ay of A2 — bA — a = 0.

This equation appeared on p. 6 as the characteristic equation (12') of the
matrix T defined there. [If we had chosen the solution sequences F;, F, generated

S H0-00

respectively, as basis for the space S, then we could have expressed the translation
operator as the 2 X 2 matrix 7 = (! }) associated with (6) on p. 5].

If A1 # A, there are two linearly independent eigen-sequences in S; they can
be normalized so that

E® = {1, )\1, >\12, “oe )\1”, cee }, E® = {1, )\2, )\22, ceey >\2", “ee },
and every solution F of (29) can be written in the form
F = 0BV 4 E®,

We turn now to differential equations. Let F: x — F (x) be an infinitely often
. differentiable function defined for real z > 0.
We denote the differentiation operator by D:

DF = F'. (28")
D is a linear operator: for any pair of functions Fy, Fy and constants o1, o
D (anF1 4+ aoFe) = auFY + a2’
We consider the differential equation

F" —bF' —aF = (D* — bD — al)F = LF = 0 (29")

14



where L abbreviates D? — bD — al, and I is the identity operator (it maps every
function into itself).

Denote by S the set of all solutions of (29'); in other words, let S be the null
set of L. Then S is a linear space. According to a classical theorem of ordinary dif-
ferential equations, a pair of arbitrarily prescribed initial values F(0) and F’(0)
determines uniquely a solution of (29’). The correspondence of solutions F to their
initial values (F(0), F’(0)) is an isomorphism of S and the two-dimensional vector
space of initial values; so S is two-dimensional.

The operators D and L commute, so S is an invariant subspace of D: derivatives
of solutions of (29’) are solutions of (29’).

Which elements of S are mapped, by D, into multiples of themselves? Those
functions K (x) for which DE = \E, or E' () = \E(z).

This is true for exponential functions

E(x) = ke,
The differential equation (29’) requires that
E" — bE' — aE = ke (N2 — b\ — a) =0,

and this holds when & = 0, E(z) = 0, and when \ is a zero of \2 — b\ — aq, the
same quadratic polynomial we met before. If \; £ )¢, the linearly independent
eigenfunctions in S are

E® (z) = M=, E® (z) = eM,
and every solution of (29’) can be written in the form
F(x) = cieM® 4 ce?,

There are countless generalizations of these principles, leading into functional
analysis and its application to partial differential equations and related fields.
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