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Lamentations 2:14 “Your prophets have seen for you false and foolish visions;
. . . they have seen for you false and misleading oracles.”

(New American Standard Bible)

At the Delphi Casino an oracle operates a table where gamblers place bets on coin flips.
The gamblers win or lose the amounts they bet, depending on whether they correctly
predict the outcomes of the coin flips. As you approach the table, the oracle says to
you, “I know how the coin will land each time and I am willing to tell you, but I must
warn you, I will try to win your bet by occasionally lying to you.” This does not strike
you as a very promising game, but after some negotiation, the oracle agrees to lie no
more than once during the next three coin flips, provided that before each flip you first
tell the oracle the amount of your wager.

The question is: How should you place your bets on the three coin tosses so that
you win the greatest amount of money in the end, no matter what the oracle does and
no matter what the coin tosses are? We assume that the oracle is always agreeable to
any amount that you wish to wager, but you cannot wager more than you currently
possess.

We first encountered this problem in an article in Scientific American [3]. A very
similar, but more general, problem appeared as Problem 10801 in the American Mathe-
matical Monthly [2], along with its solution [1]. We gave this problem as a “Problem of
the Fortnight” at Hampden-Sydney College, where we assumed you began with $100
and the coin was flipped three times. One student solved the problem in the following
manner (slightly paraphrased):

“The greatest amount of money that you can be guaranteed to receive, regardless
of what the oracle does and regardless of what the coin flips are, is $200: You should
bet $50 on the first flip and agree with the oracle’s prediction. If the oracle lies, then
you will still have $50 left, but will correctly guess the remaining two flips for $200;
if the oracle is truthful, then you will have $150. On the next flip again bet $50 and
agree with the oracle’s prediction. If the oracle lies, then you have $100 with one flip
remaining, which you will guess correctly for $200; if the oracle is truthful, then you
will still have $200 and will bet $0 on the final flip.”

While this answer is not entirely rigorous, the key ideas are present: No matter
what the oracle does and what the results of the tosses are, if you always agree with
the oracle, you have a strategy that guarantees that you double your initial amount.

This answer raised some interesting questions: How does the solution change if
we increase the number of flips and allow the oracle to lie more than once? Can you
outwit the oracle by disagreeing with the oracle’s prediction? Or, stated differently, is
there a strategy by which you could expect to win more than the maximum guaranteed
outcome? Furthermore, is it possible to use the size of the bet to influence the oracle
either to lie or tell the truth?
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In this article, we first analyze the original game, but with any number of flips,
followed by a simple generalization where the oracle may lie more than once. We
then investigate the problem of trying to outwit the oracle, that is, finding strategies
that give you the best chance for a better expected outcome, if possible, as well as
strategies that the oracle should employ to minimize your chances for a better outcome.
The mathematics involves relatively straightforward applications of game theory and
probability, leading to some interesting results.

Believing the oracle

Our initial strategy will be always to agree with the oracle’s prediction and make our
bets on the basis of that strategy. We will start by solving the basic problem, where the
oracle may lie at most once, and then allow the oracle to lie multiple times.

Multiple flips, one lie We begin with a restatement of the basic problem.

The Lying Oracle Problem: The oracle agrees to flip the coin a specified number of
times and to predict the outcome accurately, except for possibly one lie. Before each
prediction, you may bet any amount up to your current holdings. The oracle will then
announce the outcome, after which you must state the outcome on which you wish to
bet. How should you place your bets for the coin tosses so that you win the greatest
amount of money in the end, no matter what the oracle does and no matter what the
coin tosses are?

Solution: Using the terminology of game theory, we will henceforth refer to you,
the bettor, as “the player.”

Let wn represent the proportion of the player’s current holdings that the player
should wager when there are n flips remaining in order to optimize the final outcome,
and let An be the ratio of the player’s final winnings to the current holdings, when the
player wagers the optimal amounts on the remaining n flips.

If the oracle tells the truth on the first of the remaining n flips, then the player has
the proportion 1 + wn of the player’s current holdings. The player must continue to
place bets cautiously since the oracle may still lie. Thus, the final proportion of the
player’s winnings would be (1 + wn)An−1.

On the other hand, if the oracle lies, then the player has the proportion 1 − wn,
but now the player is free to bet the maximum amount on all n − 1 remaining flips,
thereby doubling the player’s money each time. In that case, the final proportion would
be (1 − wn)2n−1.

We wish to find the value of wn that will make these two expressions equal, nulli-
fying the effect of the oracle’s lie. That is, we wish to find the value of wn such that

(1 − wn)2
n−1 = (1 + wn)An−1. (1)

This common value will be the value of An. In particular,

An = (1 − wn)2
n−1. (2)

Now by applying the above reasoning again, we see that An−1 = (1 − wn−1)2n−2.
Substituting this into (1) produces

(1 − wn)2
n−1 = (1 + wn)(1 − wn−1)2

n−2.
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Solving for wn yields the recurrence relation

w1 = 0,

wn = 1 + wn−1

3 − wn−1
, n ≥ 2.

(The condition w1 = 0 follows from the observation that with one flip and one lie, the
player cannot guarantee a correct prediction; hence, the player should wager nothing.)
An easy induction shows that the solution to this relation is

wn = n − 1

n + 1
, n ≥ 1. (3)

A formula for An is obtained by substituting the expression for wn given in equa-
tion (3) into equation (2). We summarize everything we have learned in the following
theorem.

THEOREM 1. If the oracle has not yet lied and there are n coin tosses remaining,
then the player should bet (n − 1)/(n + 1) of the player’s current amount of money.
However, if the oracle has lied and therefore cannot lie again, the player should bet
everything. In either case, the player’s final amount will be exactly 2n/(n + 1) times
the player’s current holdings.

Multiple flips, multiple lies A natural generalization of this problem is to allow the
oracle to lie more than once, so suppose that the oracle may lie up to k times during the
coin flips. If the player’s strategy is to continue to agree with the oracle’s prediction,
how should the player place the bets now so that the player again gets the greatest
amount of money in the end?

In this case, we are dealing with a family of games, Gn,k , where Gn,k represents the
game of n coin flips and at most k lies. Thus, if the oracle tells the truth, then play
proceeds to game Gn−1,k , and if the oracle lies, then play proceeds to game Gn−1,k−1.
FIGURE 1 shows how the games proceed, beginning with 4 flips and 2 possible lies by
the oracle. Note that game Gi,i is always followed by game Gi−1,i−1, for all i ≥ 1.

G4,2
T−−−−→ G3,2

T−−−−→ G2,2
T−−−−→ G1,1

T−−−−→ G0,0

L

� L

� L

� L

�
G3,1

T−−−−→ G2,1
T−−−−→ G1,1

T−−−−→ G0,0

L

� L

� L

�
G2,0

T−−−−→ G1,0
T−−−−→ G0,0

Figure 1 The game tree starting with 4 flips and 2 lies

Let wn,k represent the proportion of the player’s current holdings that the player
should wager in game Gn,k in order to optimize the final winnings, and let An,k repre-
sent the ratio of the final winnings to the player’s current holdings, provided the player
wagers the optimal amounts in game Gn,k and all succeeding games. Let us call wn,k

the critical wager.
If the player continues to believe the oracle’s predictions, then whenever k equals n,

the player should bet $0 from that stage on, as the oracle could lie every time, giving
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the player no opportunity to recover from a loss. Notice also that the games Gn,0 simply
double the player’s money with each coin toss, and that the games Gn,1 were analyzed
above.

THEOREM 2. For all n ≥ 1 and for all k, 0 ≤ k ≤ n, in the game Gn,k ,

An,k = 2n∑k
i=0

(n
i

) (4)

and

wn,k =
(n−1

k

)
∑k

i=0

(n
i

) . (5)

Proof. We will first establish a recurrence relation among the numbers An,k . Con-
sider the first of n flips. If the oracle has told the truth, then the player would win wn,k

of the player’s current holdings on that flip. If the oracle has lied, then the player would
lose the proportion wn,k on that flip. In the first case, the player’s final winnings would
be (1 + wn,k)An−1,k and in the second case it would be (1 − wn,k)An−1,k−1.

In order to maximize the player’s guaranteed winnings, these two amounts should
be equal. Setting them equal and solving for wn,k yields

wn,k = An−1,k−1 − An−1,k

An−1,k−1 + An−1,k
. (6)

It follows that

An,k = (1 + wn,k)An−1,k =
(

1 +
(

An−1,k−1 − An−1,k

An−1,k−1 + An−1,k

))
An−1,k

= 2An−1,k−1 An−1,k

An−1,k−1 + An−1,k
.

We see from this equation that An,k is the harmonic mean of An−1,k−1 and An−1,k , that
is,

1

An,k
= 1

2

(
1

An−1,k−1
+ 1

An−1,k

)
. (7)

We will use equation (7) to establish (4) by induction.
First, it is clear that wn,0 = 1, since the player will bet the full amount if the player

knows that the oracle will not lie, and that wn,n = 0, since the player will bet nothing if
the oracle cannot be counted on to tell the truth at least once. It follows that An,0 = 2n

and An,n = 1, for all n ≥ 1.
Thus, equation (4) holds for all n when k = 0 or k = n. In particular, it holds for

all k, 0 ≤ k ≤ n, when n = 0 or n = 1. We proceed by induction on n. Let us assume
that equation (4) is correct for all k, 0 ≤ k ≤ n, for some n ≥ 1, and consider An+1,k ,
for some k where 0 < k < n + 1. We complete the induction by computing

1

An+1,k
= 1

2

(
1

An,k−1
+ 1

An,k

)
= 1

2

(∑k−1
i=0

(n
i

)
2n

+
∑k

i=0

(n
i

)
2n

)

=
∑k−1

i=0

(n
i

) + ∑k
i=0

(n
i

)
2n+1

= 1 + ∑k
i=1

(( n
i−1

) + (n
i

))
2n+1

=
∑k

i=0

(n+1
i

)
2n+1

.
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Now the reader can easily use (6) to verify that

wn,k =
(n−1

k

)
∑k

i=0

(n
i

) .

TABLES 1 and 2 give the values of An,k and wn,k for 1 ≤ n ≤ 7 and 0 ≤ k ≤ 6.
It is interesting to note that the same solution was obtained by Pudaite [2], where the
assumption was equivalent to the oracle’s lying exactly k times in n coin flips.

TABLE 1: Table of final winnings An,k

k

n

0 1 2 3 4 5 6

1 2 1 1 1 1 1 1

2 4
4

3
1 1 1 1 1

3 8
8

4

8

7
1 1 1 1

4 16
16

5

16

11

16

15
1 1 1

5 32
32

6

32

16

32

26

32

31
1 1

6 64
64

7

64

22

64

42

64

57

64

63
1

7 128
128

8

128

29

128

64

128

99

128

120

128

127

TABLE 2: Table of critical wagers wn,k

k

n

0 1 2 3 4 5 6

1 1 0 0 0 0 0 0

2 1
1

3
0 0 0 0 0

3 1
2

4

1

7
0 0 0 0

4 1
3

5

3

11

1

15
0 0 0

5 1
4

6

6

16

4

26

1

31
0 0

6 1
5

7

10

22

10

42

5

57

1

63
0

7 1
6

8

15

29

20

64

15

99

6

120

1

127
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Note that if the player does not bet the critical wager wn,k at each stage, then the
oracle can follow a pure strategy that guarantees the player’s final outcome to be less
than if the player had bet the critical wager. If the player bets more than the criti-
cal wager, then the oracle will lie, reducing the amount the player has to start with
for the next game by more than the critical wager. Likewise, if the player bets less than
the critical wager, then the oracle will tell the truth, which will increase the amount
the player has to start with for the next game by less than the critical wager. Thus, by
betting an amount different from the critical wager, the player can induce the oracle
to lie or be truthful, but always at a disadvantage to the player, provided the player
continues to believe the oracle.

Outwitting the oracle

The above analysis makes two crucial assumptions: the player will always agree with
the oracle, and the oracle knows that the player will always agree. These assumptions
ensure that the player will never receive less than the guaranteed amount, no matter
what the oracle does or how the coin is flipped, but they also guarantee that the player
will never receive more than that amount. But what if the player suspects that the oracle
is lying? Can the player expect to increase the final winnings by not agreeing with the
oracle? Indeed, can the player induce the oracle to lie by betting a large amount, and
then win that amount by disagreeing with the oracle? As we investigate this possibility,
we will also assume that the oracle now suspects that the player may disagree.

A single flip Let’s begin with a simple example. Suppose we have exactly one flip
and the oracle has one lie. If the oracle knows that the player will always agree with
the oracle’s prediction, then the oracle will lie if the player bets any amount at all.
However, if the player is unpredictable—the player may choose to disagree—is it to
the player’s advantage to bet some amount? Is there a strategy for betting a certain
wager so that the player’s expected payoff is more than the amount guaranteed by the
previous analysis? After all, in this game the player following the previous strategy
would bet nothing.

This game may be modeled by a simple two-by-two matrix, where the entries rep-
resent the payoffs for the player. The rows indicate the player’s two strategies (Agree
or Disagree), while the columns represent the oracle’s two strategies (tell the Truth or
tell a Lie). Hence, in this example, we have the following payoff matrix for the player:

( Truth Lie
Agree 1 + w 1 − w

Disagree 1 − w 1 + w

)
,

where w is the proportion wagered (whether optimal or not). Let pT and pL be the
probabilities that the oracle will tell the truth or lie, respectively. Similarly, let pA
and pD be the probabilities that the player will agree or disagree with the oracle, re-
spectively. In order to decide which strategy to pursue, the player computes the ex-
pected payoff of each row of the payoff matrix; the player then chooses the strategy
(row) whose expected payoff is the greater of the two. The player’s expected payoff of
agreeing with the oracle is pT (1 + w) + pL(1 − w); likewise, the expected payoff of
disagreeing with the oracle is pT (1 − w) + pL(1 + w).

On the other hand, the oracle’s optimal strategy occurs when these two expected
payoffs are equal. Setting the expected payoffs from the two rows equal yields

pT (1 + w) + pL(1 − w) = pT (1 − w) + pL(1 + w).
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Solving for pT and pL gives pT = pL (assuming that w > 0). Since pT + pL = 1,
we have that pT = pL = 1/2. Substituting these values into the player’s expected
payoff from the first row gives us an expected payoff of 1. A similar calculation yields
pA = pD = 1/2. Thus, the player cannot expect to do any better in this case than in
the original scenario.

Multiple flips A similar analysis works in general. Let En,k denote the expected
payoff of the game Gn,k when the player and the oracle employ their optimal strategies.
In this game, the payoff matrix is

( Truth Lie
Agree (1 + w)En−1,k (1 − w)En−1,k−1

Disagree (1 − w)En−1,k (1 + w)En−1,k−1

)
,

where w is the proportion of the wager. The strategies adopted by the players depend,
of course, on the values of w, En−1,k , and En−1,k−1.

LEMMA 1. In the game Gn,k , for all n ≥ 1 and for all k, 1 ≤ k ≤ n,

En,0 = 2n, (8)

En,n = 1, (9)

En,k < En,k−1, (10)

En,k = 2En−1,k−1 En−1,k

En−1,k−1 + En−1,k
. (11)

Proof. We will establish (8) and (9) first. The game G1,0 is trivial. The oracle must
tell the truth and the player will agree. Therefore, E1,0 = 2. Notice also that we have
already analyzed the game G1,1 and found that E1,1 = 1.

In the game Gn,0, the oracle must always tell the truth, which gives the player a pure
strategy of agreeing with the oracle each time. Thus, the player’s optimal strategy is
to wager the entire amount and will therefore double the amount wagered each time.
Hence we have En,0 = 2n.

The game Gn,n has payoff matrix

( Truth Lie
Agree (1 + w)En−1,n−1 (1 − w)En−1,n−1

Disagree (1 − w)En−1,n−1 (1 + w)En−1,n−1

)
.

(Recall that whether or not the oracle lies, the next game is Gn−1,n−1.) Again, a straight-
forward analysis shows that En,n = En−1,n−1 and it follows that En,n = 1 for all n ≥ 1.

We now establish parts (10) and (11) of the lemma. First, note that we have already
shown that E1,1 < E1,0. Also, if we define E0,1 = E0,0 = 1, then we see that

E1,1 = 2E0,0 E0,1

E0,0 + E0,1
= 1.

We will proceed by induction on n. Suppose that (10) and (11) hold for some n ≥ 1
and for all k, 1 ≤ k ≤ n. Consider, for some such k, the payoff matrix of game Gn+1,k:

( Truth Lie
Agree (1 + w)En,k (1 − w)En,k−1

Disagree (1 − w)En,k (1 + w)En,k−1

)
.
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We say that a row is a dominated row if its entries are never greater than the corre-
sponding entries of the other row in the payoff matrix. On the other hand, we say that
a column is a dominated column if its entries are never less than the corresponding
entries of the other column in the payoff matrix. This difference reflects the fact that
the oracle’s goal is to reduce the amount that the player wins; hence, the oracle always
seeks the smallest possible payoff for the player.

Clearly, neither row is dominated by the other (assuming that w > 0). It is also
clear, from the assumption that En,k < En,k−1, that column 1 cannot be dominated by
column 2. However, column 2 will be dominated by column 1 if

(1 + w)En,k ≤ (1 − w)En,k−1.

This occurs when

w ≤ En,k−1 − En,k

En,k−1 + En,k
. (12)

In this case, the oracle has a pure strategy: always tell the truth, in which case the
player also has a pure strategy: always agree. This produces a payoff of (1 + w)En,k .
Subject to the inequality (12), this expression reaches a maximum value of

2En,k−1 En,k

En,k−1 + En,k

when

w = En,k−1 − En,k

En,k−1 + En,k
.

On the other hand, when w > (En,k−1 − En,k)/(En,k−1 + En,k), neither column is
dominated by the other, in which case the oracle has a mixed strategy. The oracle’s
optimal strategy (pT , pL) will make the expected payoff of row 1 equal to the expected
payoff of row 2. That is,

pT (1 + w)En,k + pL(1 − w)En,k−1 = pT (1 − w)En,k + pL(1 + w)En,k−1. (13)

This simplifies, since w > 0, to

pT En,k = pL En,k−1.

Using the fact that pL = 1 − pT , we may solve for pT and pL :

pT = En,k−1

En,k−1 + En,k
, (14a)

pL = En,k

En,k−1 + En,k
. (14b)

Now, by substituting these expressions into either side of (13), we compute the
expected payoff to be

2En,k−1 En,k

En,k−1 + En,k
.
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This establishes that the optimal payoff occurs when

w ≥ En,k−1 − En,k

En,k−1 + En,k
,

in which case the oracle will utilize the optimal strategy given by (14a) and (14b).
Thus

En+1,k = 2En,k−1 En,k

En,k−1 + En,k
, (15)

which establishes (11).
As was remarked in (7), equation (15) implies that En+1,k is the harmonic mean of

En,k−1 and En,k ; that is,

1

En+1,k
= 1

2

(
1

En,k−1
+ 1

En,k

)
.

Therefore,

En,k < En+1,k < En,k−1.

Since these inequalities hold for all k, 1 ≤ k ≤ n, it follows that

1 = En,n < En+1,n < En,n−1 < · · · < En,1 < En+1,1 < En,0 = 2n,

establishing that

En+1,k < En+1,k−1

for all k, 2 ≤ k ≤ n. As special cases, we have already shown that En+1,n+1 = 1 and
En+1,0 = 2n+1, so we may conclude that inequality (10) of the lemma holds in general.

COROLLARY 1. If the player and the oracle follow their optimal strategies in the
game Gn,k , then an optimal wager is any amount w such that

En−1,k−1 − En−1,k

En−1,k−1 + En−1,k
≤ w ≤ 1.

As before, we will call the value

wn,k = En−1,k−1 − En−1,k

En−1,k−1 + En−1,k
(16)

the critical wager.

COROLLARY 2. Let w be the amount of the wager in the game Gn,k . Then the
oracle’s optimal strategy is given by

pT =
{

1 if 0 ≤ w ≤ wn,k
1
2 + 1

2wn,k if wn,k < w ≤ 1 (17)

and the player’s optimal strategy is given by

pA =
{

1 if 0 ≤ w ≤ wn,k
1
2 + 1

2

(wn,k
w

)
if wn,k < w ≤ 1.
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Proof. By using formulae (14a), (14b), and (16), we see that

pT − pL = wn,k

when the oracle has a mixed strategy, from which the formula for the oracle’s strategy
follows. We will now compute the player’s optimal strategy (pA, pD) for the game
Gn,k . This strategy occurs when the expected values of the two columns of the payoff
matrix are equal, giving the equation

pA(1 + w)En−1,k + pD(1 − w)En−1,k = pA(1 − w)En−1,k−1 + pD(1 + w)En−1,k−1.

This simplifies to

w(pA − pD) = wn,k,

from which the formula for the player’s strategy follows.

If the player bets any amount up to the critical wager wn,k , then Corollary 2 pre-
scribes a pure strategy: always agree. On the other hand, it is now rational for the
player to bet more than the critical wager. Indeed, it is rational for the player to bet
even the full amount (w = 1), provided the player is willing to disagree with the oracle
occasionally. We will pursue this possibility further in the next section.

It is interesting to note that, if the player bets more than the critical wager wn,k , then
the oracle’s mixed strategy is not dependent on the size of the wager, even though the
player’s mixed strategy is.

THEOREM 3. For all n ≥ 1 and for all k, 0 ≤ k ≤ n, in the game Gn,k ,

En,k = 2n∑k
i=0

(n
i

)
and

wn,k =
(n−1

k

)
∑k

i=0

(n
i

) .

Proof. Lemma 1 establishes the same recurrence relation for En,k that was earlier
established for An,k . Thus, the solution for En,k is the same as the solution for An,k .
Furthermore, equation (16) is of the same form as equation (6), so wn,k will be the
same as before.

We see that the expected payoff in this case is the same as the guaranteed payoff in
the earlier case where the player always agreed with the oracle. Therefore, you can’t
outwit the oracle (in the long run) by disagreeing with the oracle! You might as well
agree with the oracle, even though you know the oracle might lie.

Probability of a given sequence

We have now seen that by betting a sufficiently large amount and occasionally dis-
agreeing with the oracle, we can induce the oracle to follow a predictable mixed strat-
egy; that is, the oracle will tell the truth with known probability pT . That makes it
possible to calculate the probability of any particular sequence of truths and lies.

Note the significance of the denominator in Theorems 2 and 3. The term
(n

i

)
rep-

resents the number of ways in which the oracle can lie exactly i times with n flips
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remaining. Hence, the denominator
∑k

i=0

(n
i

)
represents the total number of ways in

which the oracle can lie with n flips and up to k lies. It turns out, as shown in the fol-
lowing theorem, that these different sequences of truths and lies are all equally likely.
This seems reasonable, since this gives the player the least amount of information on
which to choose whether to agree or disagree.

THEOREM 4. Beginning with game Gn,k , the probability of any given sequence of
truths and lies for the n coin tosses is 1/

∑k
i=0

(n
i

)
.

Proof. Let T and L represent truths and lies, respectively, in a sequence of flips. We
proceed by induction. In the game G1,1 there are only two possible sequences: T or L .
As we have already seen, the probability of each is 1/2. Now suppose that for some
n ≥ 1, the likelihood of any particular sequence of truths and lies beginning with the
game Gn,k is 1/

∑k
i=0

(n
i

)
, for all k, 0 ≤ k ≤ n. Consider a sequence beginning with

the game Gn+1,k for some k, 0 ≤ k ≤ n + 1. The first term of the sequence is either T
or L . By substituting the expressions in Theorem 3 into formula (17) and simplifying,
we find that the probability that the first term is T is

pT =
∑k

i=0

(n
i

)
∑k

i=0

(n+1
i

) ,

and the probability that the first term is L is

pL =
∑k−1

i=0

(n
i

)
∑k

i=0

(n+1
i

) .

By hypothesis, the probability of the remaining n terms of the sequence is either
1/

∑k
i=0

(n
i

)
or 1/

∑k−1
i=0

(n
i

)
, depending on the number of lies remaining. Therefore,

if the first term is T , then the probability of the full sequence is

pT

(
1∑k

i=0

(n
i

)
)

= 1∑k
i=0

(n+1
i

)
and if the first term is L , then the probability of the full sequence is

pL

(
1∑k−1

i=0

(n
i

)
)

= 1∑k
i=0

(n+1
i

) .

Thus, regardless of the first term, the probability of every sequence beginning with
game Gn+1,k is 1/

∑k
i=0

(n+1
i

)
. This completes the induction.

The significance of the equation

En,k = 2n∑k
i=0

(n
i

)
now becomes more apparent. The expected payoff of game Gn,k does not depend on
the size of the wager w, provided w ≥ wn,k . Therefore, consider the simple case where
w = 1 in every game. If the oracle tells so much as a single lie, then the player loses
everything, ending up with $0. However, if the player succeeds (by chance) in out-
witting the oracle every time, then the player ends up with $2n . This happens with
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probability 1/
∑k

i=0

(n
i

)
. Therefore, the expected payoff is

En,k = 2n∑k
i=0

(n
i

) ,

just as we calculated earlier.

Final thoughts

Playing the game with the lying oracle is best suited for those who are averse to risk.
After all, if you try to outwit the oracle, you can’t expect to do any better than if you
simply believe the oracle each time. Furthermore, by betting large sums of money you
cannot tempt the oracle into trying to outwit you, provided the oracle suspects that you
may disagree. Indeed, the oracle simply mixes the predictions with lies and truths in a
fixed fashion, aloof to the amount you bet, unless you are too cautious with your bet.

Listed below are some variants of the game which may make for some interesting
further investigation. In each case, what is the player’s optimal strategy and expected
payoff?

• In the above analysis, the oracle need not lie at all during the course of the coin flips.
Suppose there is a minimum number of lies that the oracle must tell.

• The oracle might also require you to place all your wagers before the first coin flip,
expressed as a proportion of the amount you’d have before each coin flip.

• Similarly, the oracle might require you to place all your wagers before the first coin
flip, but expressed as absolute amounts. If your holdings ever drop below your next
wager, then you lose everything [3].

• Suppose the oracle improves the payoff for guessing the coin flip correctly (say, a
correct guess pays 3:1). (See the editorial comment in [1].)

• What if the probability distribution of the possible outcomes isn’t uniform (say, the
coin is weighted)?

• What if, instead of a coin, the oracle uses a die (or any other object where the number
of possible outcomes is greater than 2)?

• Consider a k-gullible oracle, that is, an oracle that continues to believe that the player
will agree until the player has disagreed k times. From that point on, the oracle
suspects that the player may disagree.
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