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A prime-power is any integer of the form p", where p is a prime and a is a positive 
integer. Two prime-powers are independent if they are powers of different primes. 
The Fundamental Theorem of Arithmetic amounts to the assertion that every positive 
integer N is the product of a unique set of independent prime-powers, which we call 
the principal divisors of N. For example, 3 and 4 are the principal divisors of 12, while 
2, 5 and 9 are the principal divisors of 90. The case N = 1 fits this description, using 
the convention that an empty set has product equal to 1 (and sum equal to 0). 

In a recent invited lecture, Brian Alspach noted [1]: Any odd integer N > 15 that is 
not a prime-power is greater than twice the sum of its principal divisors. For instance, 
21 is more than twice 3 plus 7, and 35 is almost three times 5 plus 7, but 15 falls just 
short of twice 3 plus 5. Alspach asked for a "nice" (elegant and satisfying) proof of this 
observation, which he used in his lecture to prove a result about cyclic decomposition 
of graphs. 

Responding to the challenge, we prove Alspach's observation by a very elementary 
argument. You, the reader, must be the judge of whether our proof qualifies as "nice." 
We also show how the same line of reasoning leads to several stronger yet equally 
elegant upper bounds on sums of principal divisors. Perhaps surprisingly, our meth- 
ods will not focus on properties of integers. Rather, we consider properties of finite 
sequences of positive real numbers, and use a classical elementary inequality between 
the product and sum of any such sequence. But first, let us put Alspach's observation 
in its number theoretic context. 

Aliquot parts and principal divisors 

The positive divisors of a positive integer have fascinated human minds for millennia. 
The divisors of an integer N > 1 that are positive but less than N are the aliquot parts 
of N. It is usual to denote their sum by s(N). Classical Greek mathematicians singled 
out the aliquot parts of N from among the integers less than N, by noting that N can be 
"built" additively from multiple copies of any one of the aliquot parts. For Euclid [4], 
a prime number is "that which is measured by a unit alone" (Book VII, definition 11), 
that is, a number which has 1 as its only aliquot part, so N is prime if s (N) = 1. Again, 
a perfect number is "that which is equal to its own parts" (Book VII, definition 22), 
that is, a number that can be "built" additively from a single copy of each of its aliquot 
parts, so N is perfect if s(N) = N. Others, such as Theon, added that N is deficient if 
s(N) < N, and abundant if s(N) > N. The numbers 6, 10, and 12 are examples from 
the three classes. 
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Euclid knew that there are infinitely many primes (Book IX, Theorem 20) and that 
an even number of the form 2k-1(2k - 1) is perfect when 2k - 1 is prime (Book IX, 
Theorem 36). In more modem times it has been proved that every even perfect number 
must have this form, and currently 40 such perfect numbers have been found, corre- 
sponding to the known Mersenne primes [12], but it is not yet known whether there 
are infinitely many perfect numbers. Indeed, it is not known whether any odd perfect 
number exists, though many constraints on the possible form of such a number have 
been proved. By contrast, infinitely many positive integers are deficient and infinitely 
many are abundant; there can be no doubt that the Greeks knew easy proofs of these 
facts. 

Interest in such matters underlies sophisticated modem computational studies of 
aliquot sequences, the sequences ao, al, a2, ... beginning at a chosen positive integer 
a0 = N, with each subsequent term found by computing the sum of the aliquot parts of 
the current term: ak+l = s(ak) for k > 0. (See [2, 7] as entry points to current knowl- 
edge about aliquot sequences.) The aliquot sequence of a given N behaves in one of 
three possible ways: (1) after a finite number of terms it arrives at 1; (2) after a finite 
number of terms it enters a finite cycle, which repeats forever; (3) it continues forever 
without repetition. Sequences that arrive at a perfect number are of type (2), as are 
those that arrive at either member of a pair of amicable numbers, namely solutions 
to s(a) = b, s(b) = a. Pythagoras knew that a = 220 and b = 284 are the smallest 
amicable pair. Members of larger cycles are called sociable numbers, and several ex- 
amples have been found in modem times. Intriguingly, it is not yet known whether 
there are any sequences of type (3); currently there are just five possible candidates 
with N < 1000, the first being N = 276. 

It can be checked that the ratio s(N)/N is 2 when N = 120, and is 3 when 
N = 30240. Indeed, it turs out that s(N)/N has no absolute upper bound, and vari- 
ous simple proofs are known. When we have proved the key inequality we need in this 
article, we shall show that it also provides an elementary proof of this fact. (A recent 
Note in the MAGAZINE by Ryan [10] concerns the denseness of the set of numbers of 
the form s(N)/N, and of the complementary set, in the positive reals.) 

Like the aliquot parts of a positive integer N, the principal divisors are a rather natu- 
ral subset of the divisors of N. Indeed, if N is not a prime-power, its principal divisors 
are a proper subset of its aliquot parts. Thus s*(N), the sum of principal divisors of N, 
satisfies s*(N) < s(N) whenever N is not a prime-power. In contrast to s(N), it turns 
out in fact that s*(N) never exceeds N. We shall prove this as our first theorem. Fol- 
lowing common practice, we write d N when d is a positive divisor of N, and pa IIN 
when pa is a principal divisor of N. The Fundamental Theorem of Arithmetic implies 
that any positive integer N can be built multipicatively from a single copy of each of 
its principal divisors: 

N= H p, 
p IIN 

where the notational convention is that the product ranges over all principal divisors 
of N. If H is replaced by E, we have the sum of all principal divisors of N. It is simple 
and instructive to prove 

THEOREM 1. Every positive integer N satisfies 

N = H pa > E pt = s*(N), (1) 
palIN p"IIN 

and (1) holds with equality just when N is a prime-power. 



Proof When N = 1, the set of all principal divisors of N is empty, so by standard 
conventions for empty sums and products, (1) holds with strict inequality in this case. 

Clearly (1) holds with equality when N has exactly one principal divisor (so N is a 

prime-power). Next suppose N has exactly two principal divisors, say N = p"qP. The 

inequality paqf > p" + qf is equivalent to (pa - 1)(qt - 1) > 1, and the latter is 
satisfied because 2 < pa < qt holds without loss of generality. Now suppose for some 
k > 2 that (1) holds with strict inequality for every positive integer with k principal 
divisors. Let N be any integer with exactly k + 1 principal divisors, let q' be one of 
them, and let N* := N/q5. Then N* has exactly k principal divisors, so 

N = q N* =pq H pa> q >, pa = pOqfi 

p" IIN* pa IIN* pa IIN* 

> y (pa+q q)=kqI + E pa > qf + E p = p. 

pa IIN* pa IIN* pa IIN* pa IIN 

Hence (1) again holds with strict inequality. The theorem now follows by induction 
onk. U 

From the proof of Theorem 1, we see that the inequality (1) will usually be very 
weak when N has several principal divisors, especially if any of them is relatively 
large. So could it be that N is usually at least twice as large as the sum of its principal 
divisors? It certainly can! This is Alspach's observation, which we mentioned at the 
outset: 

THEOREM 2. Let N be an odd positive integer with at least two distinct prime 
factors. If N > 15, then 

N-1 N 
> pa = s*(N). (2) 

pa IN 

We shall now briefly recall a classic inequality for real numbers, and then use it to 

prove Theorem 2. 

The Bernoulli-Weierstrass inequality 

Let R+ := {x E R : x > 0} and, for any n > 1, let a := (al, a2,..., a) E (R+)n be a 

sequence of nonnegative real numbers. Weierstrass [11] reasoned: 

(1 + al)(l +a2) = 1 +al +a2 +ala2 > 1 +al +a2, 

(1 + al)(l + a2)(1 + a3) > (1 + al + a2)(1 + a3) > 1 + + a2 +2 a3, 

and so on. Modulo attention to when equality may hold, this is essentially an inductive 

proof of the following theorem. 

THEOREM 3. (WEIERSTRASS) If a E (R+)n and n > 1, then 

n n 

f(l+ ai) > l+ ai (3) 
i=1 i=1 

and (3) holds with equality if and only if at most one of the numbers ai is nonzero. 

This classical elementary inequality (3) is the key tool underlying our arguments in 
this article. Some authors, such as Durell and Robson [3], call it Weierstrass's inequal- 
ity but it is not clear whether Weierstrass was the first to establish it. Hardy, Littlewood, 
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and P6lya [8] noted it as Theorem 58 without attribution, though they credited Jacques 
Bernoulli with the special case in which a is a constant sequence with terms greater 
than -1. We shall refer to (3) as the Bernoulli-Weierstrass inequality. 

Earlier when discussing aliquot parts we remarked that the ratio s(N)/N is known 
to have no absolute upper bound. It is of interest here to see how this can be derived 
from the Beroulli-Weierstrass inequality. 

THEOREM 4. For any integer N > 2, the sum of aliquot parts s(N) satisfies 

s(N) CE I (4) 
N plN P 

and (4) holds with equality if and only if N is prime. 

Proof. The sum of all positive divisors of N is 

N+ s(N) = n p > (pa + pEa1 
pa JIN pfi pa PIIN pot II N pII pa poIN 

pa IIN P ) pN ( p/ 

The second step holds with equality if and only if all principal divisors of N are prime, 
so if and only if N is squarefree. After dividing by N, the Beroulli-Weierstrass in- 
equality (3) now gives 

s(N) >l-I 1+ 1 + N > ( 1+ E- 11 NI7! (?ppIN / pIN 

with equality at the second step just when N has only one prime divisor. The stated 
result now follows. E 

Euler proved in 1737 that the sum of reciprocals of all primes is divergent [9], so it 
follows immediately from (4) that s(N)/N has no absolute upper bound. 

Deducing Alspach's inequality 

The Bernoulli-Weierstrass inequality is really about sums and products of real num- 
bers close to 1. We want to apply it to integers, such as occur in Alspach's inequality 
(Theorem 2) so we need to scale the individual terms to get a version of the Beroulli- 
Weierstrass inequality that is about sums and products of real numbers close to some 
positive real number b, which we shall choose subsequently. 

With a E (IR+)" and n > 1, and any strictly positive b E IR+, multiply both sides of 
the Bemoulli-Weierstrass inequality (3) by bn. Then 

n n 

HI(b + aib) > bn + bn-l aib. 
i=l i=l 

Put c := (cl, 2, ... , Cn) = (alb, a2b,..., anb) = ba, and choose any strictly positive 
d E R+ such that dn < bn-1. With this notation, we have 

n n n 

H(b +ci) > b+bn-l Ci > d bn + n Ci > d (b+ci), 
i=l i=l i=l i=l 
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where the last step holds with strict inequality if n > 2 and Sn=lci > O. The latter fails 
only when c = 0, where 0 := (0, 0, ..., 0) E R+. Hence we have a scaled version of 
the Bemoulli-Weierstrass inequality: 

PRODUCT-SUM LEMMA. For n > 1, any strictly positive b E R+, and any se- 
quence c E (R+)n, let N := in=1(b + ci). Then for any d E R+ satisfying 0 < d < 
bn- /n, we have 

N n 
> (b + ci), (5) 

i=1 

and (5) holds with equality if and only if d = b"-'/n, and c = 0 if n > 2. 

In (5), note that N is a positive real, not necessarily an integer. To prove Theorem 2, 
we want an inequality of the form (5) with d = 2. But we may take d = 2 in the 
Product-Sum Lemma when n = 2 and b = 4, or when n = 3 and b = -V6, or when 
n > 4 and b = 2. Put d := (dl, d2 ..., dn) = (b + cl, b+ c2, ..., b + c). Then d is 
a sequence of real numbers (not necessarily integers) close to b, and we have 

THEOREM 5. Let d E (R+)n, with n > 2. 

(a) If4 < d1 < d2, then \d1d2 > d, +d2. 

(b) If v < d < d2 < d3, then 1d1d2d3 > d1 +d2 + d3 
(c) If2 < dl < d2< .. < dn and n > 4, then 

1 
_dld2 . . . dn > dl + d2+ - + dn. 
2 

In each case, thefinal relation holds with equality if and only if the preceding relations 
all hold with equality. 

Now let us require the di of Theorem 5 to be distinct positive integers: 

COROLLARY. Let N be a product of n > 2 distinct positive integers dl < d2 < 
. < dn. Then 

n 
> Edi (6) 

i=1 

if(a) n = 2 and dl >4, or (b) n = 3 and dl > 3, or (c) n > 4 and dl > 2. 

We are now very close to having proved Alspach's inequality, Theorem 2. In fact, 
we are about to obtain a more comprehensive result that also admits more than half 
the even integers. Since N and Sin_ldi are integers in the Corollary to Theorem 5, the 
inequality (6) is equivalent to 

N-1 i 

2 >Ldi. p i= 

In particular, if N has n > 2 distinct prime factors, we may take the di to be the 
principal divisors of N, obtaining 

N-1 
> p = s*(N) 

2_ -pa IIN 
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whenever the conditions of the Corollary hold: since (c) certainly holds when n > 4 
and the di are principal divisors, the only possible exceptions are when (a) fails, so 
n = 2 and 2 11N or 3111N, or when (b) fails, so n = 3 and 2111N. Let us settle the 
remaining details when n = 2 and n = 3. 

When n = 2, let dl < d2 be the principal divisors of N. Suppose that dl = 2, then 
N - (2 + d2) = -2 < 0, so N cannot exceed dl + d2. Again, if dl = 3, then N - 

(3 + d2) = 2 (d2 - 6) > 0 provided d2 > 7, so d2 = 4 or 5 are the exceptions. Thus, we 
have ruled out the cases with N = 12, 15 or twice an odd prime-power; in particular, 
every N < 20 with n = 2 is ruled out. 

When n = 3, let dl = 2 < d2 < d3 be the principal divisors of N. In this case, 
N - (2 + d2 + d3) = (d2- 1)(d3 -1) -3 > 5, since d2 > 3, d3 > 5. Thus, there 

are no exceptions to the desired inequality when n = 3. 
This completes the proof of the following result, which is more comprehensive than 

Theorem 2, thus achieving our original Alspach objective: 

THEOREM 2A. Any integer N > 20 with at least two distinct prime factors satisfies 

N-1 
2 - 

N-1 , p s*(N), (7) 
- - p IIN 

except when N = 2q , where q is an odd prime and 6 > 1. 

Note that the exceptions to (7) are actually near-misses: if N = 2qp, then 

N+4 
N4= p=s*(N). 

Pa JIN 

After checking the individual cases with N < 20, we deduce: 

THEOREM 2B. If N is any positive integer with at least two distinct prime factors, 
then 

N+4 +4 
> p = s*(N), (8) 

2 - p IIN 

and equality holds just when N = 2q', where q is an odd prime and ,8 > 1. 

In fact, we can readily establish a stronger upper bound than (7) for s*(N), an upper 
bound that depends on the number of distinct prime factors in N. To achieve this, note 
that n2 < 3n-1 for all integers n > 3, so we may take b = 3 and d = n > 3 in the 
Product-Sum Lemma. Thus we have an extension of Theorem 5: 

THEOREM 5A. Let d e (R+)n, with n > 3. If 3 < dl < ... < dn, then 

1 
-dd2 . .. dn > d, +d2 + * * + dn, 
n 

and equality holds if and only if n = 3 and dl = d2 = d3 = 3. 

This leads us to a result that subordinates Theorems 1, 2 and 2A: 

THEOREM 6. Any positive integer N with n > 1 distinct prime factors satisfies 

N > pa = s*(N), (9) 
n 

paN 

except when N = 12, 15 or 2qp, where q is an odd prime and ,B > 1. Also (9) holds 
with equality just when N = 30 or pa, where p is any prime and a > 1. 
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Proof. The result is obvious when n = 1, and follows from Theorem 2A when 
n = 2. Suppose n > 3. If all principal divisors of N are at least 3, taking the di in 
Theorem 5A to be these principal divisors immediately yields (9) with strict inequal- 
ity. So suppose N = 2N*, where N* is a product of n - 1 odd principal divisors. If 
N = 30 it is evident that (9) holds with equality. Otherwise we may assume N* > 15, 
so N* > 21 and 

a 
> E pa =s*(N*) 

pn P"IIN* 

follows from Theorem 2A if n = 3, and from Theorem 5A if n > 4. Hence 

N 2N* ( n-2 N* ( n- ) 

But s*(N*) > 10 and (n - 2)/n > 3, so 

N 
(1+ n-2) o p >3+ E p > E p = S (N). 

n n poa II N* pa II N* p' IIN 

Thus N satisfies (9) with strict inequality, settling all remaining cases. U 

Reverse arithmetic-geometric mean inequality 

The sequence a E (R1+)n with n > 1 has arithmetic mean A(a) and geometric mean 
G(a) given by 

n n l/n 

A(a) Ei:= ai and G(a) (i= ai) n 

The classical inequality comparing products and sums of finite sequences of nonnega- 
tive real numbers is the Arithmetic-Geometric Mean Inequality: 

A(a) > G(a), (10) 

and (10) holds with equality if and only if a is a constant sequence. 
A constant sequence is a scalar multiple of 1 := (1,1,..., 1) (IR+)n, so a is 

constant precisely when a = cl for some c E IR+. Given any a, b E (IR+)n, we say 
that a dominates b if ai > bi holds for every i in the interval 1 < i < n, and that a 
strictly dominates b if furthermore the strict inequality ai > bi holds for at least one i. 
Thus (10) holds with strict inequality precisely when a strictly dominates cl, where 
c:= min{ai : 1 <i <n}. 

We may regard (10) as an inequality in which a multiple of the sum Ein ai is at 
least as large as a power of the product ln,ai. To deduce Alspach's inequality we 
were concerned with inequalities in the reverse direction, where a multiple of the prod- 
uct is at least as large as the sum. This suggests the unfamiliar novelty of comparing 
a multiple of G(a) with a power of A(a). Such an inequality does result from the 
Product-Sum Lemma when we take b = n, b + ci = ai, d = nn-2, N = G(a)n and 

Einl (b + ci) = nA(a). This yields: 
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THEOREM 7. For n > 2, suppose the sequence a E (R+)n dominates the constant 

sequence nl. Then its arithmetic mean A(a) and geometric mean G(a) satisfy 

G(a) A (a) (11) 
n n 

and (11) holds with equality precisely when a = nl. 

For instance, a = (3, -/10, /-10) strictly dominates (3, 3, 3), so Theorem 7 shows 
that a satisfies (11) strictly, whence 7/2 > V10. Theorem 7 yields a further extension 
of Theorem 5, from which we deduce two corollaries: 

THEOREM 5B. Let d E (R+)n with n > 2. If n < dl < < dn, then 

1 
nn-d1d2 ... dn > di + d2 + + dn, 

and equality holds if and only if n = dl = d2 = = dn. 

COROLLARY 1. If N is the product of n > 2 distinct positive integers d1 < d2 < 

< dn, with d1 > n, then 

- > Edi. (12) 
nn-2 i=1 

COROLLARY 2. If the positive integer N has n > 2 principal divisors, and each is 
at least as large as n, then 

n-2 > pa = s*(N) (13) nn-2-=.W. (13) 
pa lN 

Extending an upper bound on s*(N) 

Let us review our progress. We began with the objective of finding, by elementary 
means, an upper bound on the sum s*(N) of principal divisors of a positive integer N. 
Our target upper bound was N/d with d = 2. We began with the modest result that 
the bound with denominator d = 1 holds without exception. Subsequently we found 
all N for which d = 2 holds. Passing from constant denominator to a linear function 
of n, the number of distinct prime factors of N, in Theorem 6 we found all exceptions 
to the simple and elegant upper bound with d = n. Now Corollary 2 to Theorem 5B 
has brought to our attention the upper bound with a super-exponential denominator 
d = nn-2. In Corollary 2, that upper bound is subject to quite a strong constraint 
on the principal divisors of N. In this final section we complete the discussion by 
showing that the same upper bound holds for a much wider class of principal divisors. 
We use the following lemma. 

MONOTONICITY LEMMA. With n > 2, suppose a E (I+)n and c E R+ satisfy 

n n 

cYa ai> ai>0. (14) 
i=l i=1 

If d E (R+)n dominates a, then 

n n 

c di > di > O. (15) 
i=- i=l1 
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Moreover, if (14) holds with strict inequality, or if d strictly dominates a, then (15) 
holds with strict inequality. 

Proof. By (14), c and every ai are strictly positive. Since d dominates a, every di 
is strictly positive, and the second inequality in (15) follows. Let 8 := max{di/a : 
1 < i < n}. For some subscript k, we have dk = Sak and di > ai for all i 

' 
k, so 

lndi > in=ls ai. Then (15) follows, since 

n n n n 

c di >cS ai, >8 ai > di. (16) 
i=l i=l i=1 i=l 

If (14) holds with strict inequality, the second step in (16) is a strict inequality. Also 
the last step in (16) holds with equality only if d = Sa. But then fIn ldi = 8n in=lai, 

implying strict inequality in the first step of (16) when d strictly dominates a, for then 
8 > 1. The lemma follows. 1 

In Corollary 2 to Theorem 5B the upper bound on s*(N) with super-exponential 
denominator d = nn-2 holds if the principal divisors of N are at least n. We now show 
that the same upper bound holds if the principal divisors exceed n/2, a much milder 
constraint. 

THEOREM 8. If N is any positive integer with n > 2 principal divisors, and each 
is greater than n/2, then 

n-2 > p" = *(N) (17) 
nz/n- 2 I 

and (17) holds with equality precisely when N 

and (17) holds with equality precisely when N = 30. 

Proof. Suppose N has n > 2 principal divisors, each greater than n/2. Let 
d E (IR+)n be the sequence of those principal divisors in increasing order. At most 
one principal divisor of N is even, so d dominates the increasing sequence a*(n), 
which we define to comprise the smallest even integer greater than n/2 and the small- 
est n - 1 consecutive odd integers greater than n/2. We claim that 

nn-2 
= nn-2 di s*(N). 

i=1 i=1 

Using the Monotonicity Lemma, this claim will follow if we can show that 

In^(")^E< - n n118) 

n-2 Ea (n) > E (n). (18) 
i=1 i=1 

For brevity we use P(n) and S(n), respectively, to denote the left and right sides 
of (18). Routine evaluation of (18) for each n in the interval 2 < n < 12 shows that 

P(3) = S(3), corresponding to N = 30, and P(n) > S(n) in all other cases. We now 

prove inductively that P(n) > S(n) holds for every n > 9, whence the theorem fol- 
lows by the Monotonicity Lemma, with N = 30 as the sole instance of equality. (The 
overlap for 9 < n < 12 is needed.) 

The fine structure of a*(n) depends on the residue class of n modulo 4. The even 

integer in a*(n + 4) is 2 greater than the even integer in a*(n), and the odd integers 
in a*(n + 4) are all but the smallest odd integer in a*(n), together with the next 5 odd 
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integers. In particular, suppose n = 4k + 1 for some positive integer k. Then the ratio 
P(n + 4)/P(n) is equal to 

2k + 4 (lOk + 1)(10k + 3)(10k + 5)(10k + 7)(10k + 9) n"-2 
2k + 2 2k + 1 (n + 4)n+2 

k+2 10k+1 10k+3 10k+7 10k+9 5 

k+1 4k+ 1 4k+ 1 4k + 5 4k + 5 (1 +4)n 

As k -+ oc the first, third and sixth factors decrease monotonically, so are always 
greater than their limits; the other three factors increase monotonically, so if we require 
k > 2 they are never less than their values at k = 2. Hence when n = 4k + 1 and k > 2 
we have 

P(n +4) 7 5 27 29 5 7 
> 1 > -. (19) 

P(n) 3 2 13 13 e4 3 

Similarly, if n = 4k + 1 then 

S(n + 4) _12k2+ 25k + 14 

S(n) 12k2 +k + 1 

As k -> oc this ratio decreases monotonically, so if we require k > 2 it never exceeds 
its value at k = 2, and 

S(n +4) 112 7 
< < -. (20) 

S(n) - 51 3 

If P(n) > S(n) when n = 4k + 1 for some k > 2, then (19) and (20) imply 

7 7 
P(n +4) > P (n) > S(n) > S(n+4). 

3 3 

Since P(9) > S(9), induction now guarantees that (18) holds with strict inequality 
when n = 4k + 1 for all k > 2. 

Similar computations for n in the other residue classes modulo 4 complete the proof. 

Closing remarks The Monotonicity Lemma is actually strong enough to yield a 
number of our earlier results. In particular, once the formulations of the Product-Sum 
Lemma and Theorem 7 have been discovered, they can be readily proved using the 
Monotonicity Lemma. It is useful for proving inequalities in which a product is greater 
than a sum, but is of little help in the initial task of formulating the inequalities. In 
recent papers [5, 6], we studied an inequality between two polynomials related to 
the sum and product of an arbitrary sequence. Our results generalize the Beroulli- 
Weierstrass inequality, so could yield inequalities like those established here. However, 
in the spirit of Alspach's motivating request, we tried here to keep our arguments as 
elementary and self-contained as possible. 
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Proof Without Words: 
Every Octagonal Number Is the 

Difference of Two Squares 

1 = 1 = 12-O02 

1 +7 = 8 = 32 12 

1 + 7 + 13 =21 = 52- 22 

1 + 7 + 13 + 19 = 40 = 72 - 32 

On = 1 + 7 + ** + (6n - 5) = (2n - 1)2 - (n - 1)2 
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