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Everyone knows that the sum of the angles of a triangle formed by three lines in the 
plane is 180?, but is this still true for curvilinear triangles formed by the arcs of three 
circles in the plane? We invite the reader to experiment enough to see that the angle 
sum indeed depends on the triangle, and that no general pattern is obvious. We give 
a complete analysis of the situation, showing along the way, we hope, what insights 
can be gained by approaching the problem from several points of view and at several 
levels of abstraction. 

We begin with an elementary solution using only the most basic concepts of Eu- 
clidean geometry. While it is direct and very short, this solution is not complete, since it 
works only in a special case. The key to another special case turns out to be a model of 
hyperbolic geometry, leading us to suspect that the various manifestations of the prob- 
lem lie on a continuum of models of geometries with varying curvature. This larger 
geometric framework reveals many beautiful unifying themes and provides a single 
method of proof that completely solves the original problem. Finally, we describe a 
very simple formulation of the solution, whose proof relies on transformations of the 
plane, a fitting ending we think, since a transformation may be regarded as a change 
in one's point of view. The background developed earlier informs our understanding 
of this new perspective, and allows us to give a purely geometric description of the 
transformations needed. 

For the reader who is unfamiliar with the classical noneuclidean geometries, in 
which the notions of line and distance are given new interpretations, we provide an 
overview that is almost entirely self-contained. Such a reader will be introduced to 
such things as angle excess, stereographic projection, and even a sphere of imaginary 
radius. For the reader who is familiar with the three classical geometries, we offer 
some new ways of looking at them, which we are confident will reveal some surprises. 

Three problems 

Consider three circles in the plane intersecting transversely (that is, with no circles 
tangent to each other) at a common point, P, as in FIGURE 1. What is the sum of the 
measures of the angles of triangle of circular arcs ABC? Answer: 180?! (The picture 
gives a hint, but we will spell out the solution shortly.) 

Next consider FIGURE 2, showing three circles whose centers are collinear. Now 
two (obviously congruent) curvilinear triangles are formed. What can be said about 
the sum of the angle measures in this case? Answer: This time, the sum is less than 
180?! 

Finally, consider three circles that intersect in the pattern of a generic Venn diagram, 
as in FIGURE 3. The boundary of the common intersection of their interiors is a convex 
curvilinear triangle; the sum of its angles is greater than 180?, because the straight- 
sided triangle with the same vertices lies inside it. What about the other six curvilinear 
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Figure 1 Three circles through a common point 

Figure 2 Three circles with collinear centers 

triangles formed by these circles? Answer: As the reader might guess, although it is far 
from obvious from the diagram, the sum in this case is also always greater than 180?! 

Figure 3 Three circles in Venn diagram position 

The solution to the first problem admits an elementary proof. Consider triangle 
ABC in FIGURE 1. Note that by symmetry, the angles labeled with the letter a have 
the same measure, as do those labeled by B and by y. We then see that 2(a + B + y) = 
360?, hence a + B + y = 180?. 

The solution to the second problem also admits a simple proof, although a more ad- 
vanced geometric idea is needed. Namely, the half-plane lying above the line through 
the three centers may be considered as the upper half-plane model of hyperbolic geom- 
etry. In this different sort of geometry, semicircles with centers on the boundary line 
take the place of lines in Euclidean geometry, and angles between these (hyperbolic) 
lines are computed using the Euclidean angles between the semicircles. A well-known 
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result in hyperbolic geometry states that the sum of the angle measures of any hyper- 
bolic triangle is always less than 180?. 

For the third problem, we will also show that the circles are lines in a model of 
geometry, this time spherical geometry, in which the angle sum of any triangle is more 
than 180?. More generally, we consider any configuration of three circles that intersect 
in pairs and give a simple criterion for deciding into which geometry they fall. 

The general theorem 

Three circles, provided they intersect in the way we have described, determine 
three lines by their points of pairwise intersection. It may surprise you to learn that 
these three lines are either concurrent or parallel. The position of the point common 
to these three lines, as described in the following lemma, is the key to determining 
which geometry will answer the question about the angle sum. 

LEMMA. Let cl, c2, and c3 be three circles in the plane, with any two of them 
intersecting in two distinct points. Let 112, 113, and 23 be the lines determined by these 
pairwise intersections. Then the lines lij } are either concurrent or parallel (in which 
case we consider them to be concurrent at infinity). Furthermore, there are exactly 
three possibilities for the location of the point of concurrency, P: 

1. P lies on all three circles (FIGURE 4a); 
2. P lies outside all three circles (FIGURE 4b), possibly at infinity; or, 
3. P lies inside all three circles (FIGURE 4c). 

Finally, if P lies outside all three circles, but not at infinity, the six tangents from P 
to the three circles all have the same length. The circle centered at P with this common 
length as radius is perpendicular to all three of the original circles. If P lies at infinity, 
the line through the centers of all three circles plays this role. 

P 

a b c 

Figure 4 The three possibilities for the location of point P 

Proof Suppose a line through P intersects a circle c in two points A and B (which 
need not be distinct). The power of P with respect to c is defined as the signed product 
(PA)(PB), where PA denotes the directed distance from P to A. We invite the reader 
to prove, using similar triangles, that the power does not depend on the line chosen. (A 
proof may be found in Coxeter and Greitzer [2, Theorem 2.11].) 

The power of P with respect to c is positive if P is outside c, negative if P is inside 
c, and 0 if P lies on c. Viewing PA and PB as vectors, we can equivalently define 
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the power as the scalar product PA ? PB; since the vectors are parallel, the cosine of 
the angle between them is ?1 according to whether they point in the same or opposite 
directions. 

If two circles intersect at points A and B, we deduce (by considering line PA, say) 
that a point P has the same power with respect to both circles if and only if it lies 

<-) 
on line AB. Suppose first that 112 and 123 are not parallel and let P be their point of 
intersection. Then P has the same power with respect to all three circles; hence, P lies 
on 113 and the lines are concurrent. If, on the other hand, two of the lines are parallel, 
an argument by contradiction shows that all three must be. 

If the lines intersect, then, as we have just observed, the power of P with respect to 
all three circles is the same. Denoting this common power by P, we have: 

Case 1. If P = 0, then P lies on all three circles. 
Case 2. If P > 0, then P lies outside all three circles. 
Case 3. If P < 0, then P lies inside all three circles. 

Finally, if P lies outside, then the length of a tangent from P to any of the circles is 
/-P. The circle with this radius and center P is orthogonal to all three circles. 1 

As an interesting digression, we note that for a general pair of circles, which need 
not intersect, a point has the same power with respect to both if and only if it lies 
on a particular line, called their radical axis, orthogonal to the segment joining their 
centers. In the course of computing the equation of this line in Cartesian coordinates, 
Coxeter and Greitzer [2, Section 2.2] also prove the beautiful fact that, if the equation 
of a circle is put in the standard form F(x, y) = (x - a)2 + (y - b)2 - r2 = 0, then 
the power of any point (x, y) with respect to that circle is just F(x, y)! This result is 
not unexpected, since the power is constant on circles concentric with the given one. 

We are now prepared to state the theorem. Triangle means a curvilinear triangle 
that is not subdivided by any arcs of the three circles. In case one, only the triangle 
that does not include P as a vertex is considered. 

THEOREM. Let cl, c2, and c3 be three circles in the plane, with each pair intersect- 
ing in two distinct points. Let 12, 113, and 123 be the lines determined by these pairwise 
intersections, with common point P. Then the sum of the angles of any triangle formed 
by the three circles is determined according to the three cases of the lemma: 

1. if P lies on all three circles, the sum is equal to 180?; 
2. if P lies outside all three circles, the sum is less than 180?; and, 
3. if P lies inside all three circles, the sum is greater than 180?. 

The proof of the theorem requires some knowledge of the classical noneuclidean 
geometries, to which we now turn our attention. The reader who is already familiar 
with these is invited to skip ahead to the section in which the theorem is proved as 
follows: For any of the possible configurations, we give a conformal map that takes 
our three circles to the lines of one of the three classical geometries; since the map 
is conformal, the angle sum is preserved, and thus found to be equal to, less than, or 
greater than 180? accordingly. 

A quick tour of three geometries 

A geometry is an abstract mathematical system in which the undefined notions of 
point and line are assumed to behave in accordance with certain axioms. (Euclidean 
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and non-Euclidean Geometries, by Marvin Greenberg [4], presents a lively account of 
the historical development of the classical geometries. Edwin Moise's text, Elementary 
Geometry from an Advanced Standpoint [7], is another very comprehensive reference.) 
In practice, we visualize a geometry by working with a model, which is described 
more concretely. Objects in the model represent points and lines in such a way that the 
axioms of the system are fulfilled. 

Although there is much to say about the classical geometries, we continue our tale 
of three circles and focus on the sum of angles in a triangle. 

The Cartesian plane, consisting of pairs of real numbers, is a model for Euclidean 
geometry, provided we adopt the usual concept of distance. Each pair of numbers 
represents a point, while lines are the solution sets of linear equations. Using algebra 
to study lines, points, and circles is called the analytic method. That the angle measures 
in a triangle sum to two right angles can be derived either from Euclid's axioms or an 
analytic approach. 

The Cartesian plane and its physical approximations, such as tabletops, in which 
parallel lines remain equidistant and meet a common transversal line at the same angle 
on the same side, have historically been described as flat (as opposed to a sphere or 
other curved surface); thus, Euclidean geometry is said to be flat, or have curvature 
zero. 

Any surface on which a distance function, or metric, has been defined is a model of 
some geometry. (These notions may be extended to higher dimensions as well.) The 
lines on this surface, called geodesics, are the curves that locally realize the shortest 
distances between their points. 

Spherical geometry A sphere sitting in R3, where we know how to measure dis- 
tances, inherits a metric that measures distances along the surface. Here, the lines are 
the great circles-those circles cut by planes through the sphere's center. The word 
local in the definition of geodesic is important; you must choose the short way around. 
The geodesic nature of great circles can be understood intuitively by noting that the 
distance along an arc is proportional to the central angle it subtends, and that central 
angles obey a sort of triangle inequality: where three planes meet, the sum of any two 
of the face angles is greater than the third. Thus, a path made up of very small (think 
infinitesimal) arcs will be shortest if all the arcs lie in the same plane through the cen- 
ter. A rigorous proof, as suggested by the preceding discussion, requires integration 
and other concepts from calculus. (Geometry from a Differential Viewpoint by John 
McCleary [6] is an accessible introduction to the application of calculus to geometry.) 

Of particular importance to us is the sum of the angles of a spherical (geodesic) 
triangle. Our calculations will be nicer if we measure angles in radians, which we do 
from now on. Some experimentation, which we invite the reader to do, suggests that the 
angle sum of a spherical triangle always exceeds 7r and decreases with the triangle's 
area, approaching, but not reaching, 7r as this area approaches zero (and approach- 
ing, but not reaching, 57r as the triangle fills up the whole sphere). This observation 
suggests that we focus on the amount by which the angle sum of a spherical triangle 
exceeds 7, which we call its angle excess. We now prove that a triangle's excess is 
always positive by precisely examining its relationship with the triangle's area. 

Several facts will lead us to the correct relationship. First, notice that the angle 
excess is additive: if a triangle is subdivided into two smaller triangles, the excesses of 
the component triangles add up to the excess of the whole, as the reader can calculate. 
Second, congruent triangles clearly have the same angle excess. These are the essential 
properties of area: the areas of the parts of a subdivided region add up to the area of 
the whole, and congruent regions have equal area! Moreover, a sphere, like the plane, 
is homogeneous: any triangle can be rigidly moved, by rotations and reflections of the 
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sphere, to any other position without changing distances or angles (or area). Together, 
these facts suggest that, for a spherical triangle, angle excess is a constant multiple of 
area. 

/ \ 

a b 

Figure 5 The sector swept out by a spherical angle 

To prove that angle excess is proportional to area, observe that the angle between 
two great circles is proportional to the area of the sector they bound. (Note the essential 
role of homogeneity here!) On a sphere of radius R, the area of the sector swept out by 
an angle a is (a/7r)(47rR2) = 4R2a. (See FIGURE 5a. For simplicity, we have used 
the same symbol to represent both the angle and its measure.) Let A represent the area 
of a triangle with angles a, ,B, and y. The sectors swept out by a, ,B, and y cover the 

sphere redundantly; the triangle and its antipodal image are each covered three times, 
while the remainder of the sphere is covered exactly once (FIGURE 5b). Thus, with a 
little algebra, we obtain the formula 

A 

R2' 
a +b+y-7 = 

In particular, on a sphere of unit radius, the angle excess is exactly equal to the area. 

Hyperbolic geometry A sphere is said to have constant positie curvature, and it is 

easy to imagine that a small sphere has large curvature, while a large sphere has small 
curvature. What would it mean for a surface to have constant negative curvature? This 

question will lead us to a model where the sum of the angles in a triangle is always 
less than tanwo right angles. 

To see how we might describe a surface of negative curvature, e start with some 
formal manipulations on the equation x2 + y2 + z2 = R2. As the constant R2 increases 
toward +oo, the curvature of the sphere described by the equation diminishes toward 
zero. We may view the Euclidean plane as a sphere of infinite radius. What happens 
when the constant term passes infinity and reappears on the negative end of the number 
line? 

We will call a surface satisfying an equation of the form x2 + y2 + z2 = R2 = 
(i R)2, which has been aptly described as a "sphere of imaginary radius," a pseudo- 
sphere. Of course, the equation will have no solutions unless we expand the domain of 
our variables from the real to the complex numbers, and its "radius" makes no sense 
unless we expand our notion of distance to include imaginary numbers. 

Distance and angles in Cartesian space are measured via the dot product, familiar 
from multivariable calculus. This product is an example of a symmetric, bilinear form, 
a type of operation that plays a large role in many branches of mathematics. In addition, 
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the dot product is positive definite: for any vector v, v v > 0, and v v = 0 if and 
only if v = 0. The length of a vector v, denoted Ivl, is defined as v/. v and the angle 
0 between two vectors is determined by the formula cos(0) = v w/(Ivl wi). 

If we allow the coordinates of our vectors to be any complex numbers, the dot prod- 
uct remains a symmetric, bilinear form, although it is no longer positive definite. A 
form with these properties is called a pseudo-metric. It is this form that we choose to 
measure distances and angles in complex Cartesian space, C', allowing these quanti- 
ties to have complex values. 

Returning to the equation x2 + y2 + z2 = -R2, we consider, to obtain a two- 
dimensional surface, only those solutions for which x and y are real. The remaining 
variable, z, is then forced to be purely imaginary, so we let z = it. To picture the 
pseudosphere, we map the solution set of our equation to a surface in R3, using the 
map (x, y, it) -+ (x, y, t). This image is a two-sheeted hyperboloid, the solution set 
of the equation x2 + y2 - t2 = _R2. The sheets are analogous to the two hemispheres 
of an ordinary sphere, the origin (0, 0, 0) may be thought of as the center, and the 
points (0,, 0, R) as the North and South poles. 

In order to measure distances and angles, we must remember that our space is an 
image of a subspace of C3, where the actual distances and angles are measured using 
the dot product. Since a vector (x, y, t) actually represents the vector (x, y, it), its 
actual length is vX2 + y2 + (it)2 = /x2 + y2 - t2. Similarly, the angle between two 
vectors (xl, yi, tl) and (x2, Y2, t2) must be based on the form x1x2 + yly2 - t1t2. Some 
readers may recognize this as a Lorentz metric, the three-dimensional version of the 
pseudo-metric of relativistic space-time. (For a readable and physically motivated, but 
advanced, introduction to pseudo-metrics, see Semi-Riemannian Geometry, by Barret 
O'Neill [8].) The apparent distances and angles in our picture are distorted from their 
actual values; for example, the true length of every radial vector from the origin to the 
surface is the imaginary number i R! 

To measure distances and angles on the pseudosphere itself, we apply the pseudo- 
metric to its tangent vectors. For any point P in IR3, the tangent space at P is the copy 
of R3 consisting of all vectors emanating from P. The tangent line at P to a curve 
through P on the surface is a one-dimensional subspace of this tangent space. The 
tangent plane to a surface at P is the two-dimensional space composed of all these 
lines. 

It is useful (and intuitive) to write coordinates and other quantities related to tangent 
vectors in terms of differential expressions. If f is a differentiable, real-valued function 
on R3, students know how to compute Vf, and use it to find directional derivatives by 
taking dot products. We prefer another vocabulary: the differential of f is the function 
that takes a tangent vector Vp, at a point P, to the real number Vf(P) ? Vp. This gives 
the best linear approximation to the change in the value of f that results from starting 
at P and travelling with a displacement vp. 

In particular, the Cartesian coordinates, x, y, and t in our model may be viewed 
as functions of P E IR3, and dx, dy, and dt, are the differentials of these functions. 
If we suppress the vector argument of these differentials, we can use dx, dy, and dt 
as the first, second, and third coordinates of a general tangent vector with respect to 
a parallel coordinate system based at P. (In FIGURE 6a, the linear approximations 
dx, dy, and dt happen to be exact, since orthogonal projection onto an axis is a 
linear function.) Thus we may conveniently write the (Lorentz) length of a tangent 
vector as the differential expression vdx2 + dy2 - dt2. This gives us the metric we 
need in order to talk about the lines of this geometry, which are the geodesics of this 
metric. 

A beautiful fact is that this differential expression is real and positive, when applied 
to vectors tangent to the pseudosphere. Since the length of a path is computed by 
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integrating the lengths of its tangent vectors, paths between points on the pseudosphere 
have real, positive length, and it makes sense to talk about geodesics as paths of locally 
minimal length. 

To see that dx2 + dy2 - dt2 > 0, it helps to use cylindrical coordinates. As an or- 
thonormal basis for the tangent space to R3 at the point with cylindrical coordinates 
(r, 0, t), take a radial unit vector, a circumferential unit vector in the counter-clockwise 
direction, and a vertical unit vector; with respect to this basis, the coordinates of a tan- 
gent vector are (dr, rdO, dt). (The factor of r in the circumferential coordinate results 
from the fact that changing the central angle by a small amount changes the distance 
travelled by r times that amount. See FIGURE 6b.) The expression dx2 + dy2, the 
squared length of the vector's horizontal component, is equal to dr2 + r2 d02. For 
a vector tangent to the hyperboloid, dt2 < dr2, since the radial slope of the hyper- 
boloid is less than that of the cone to which it is asymptotic. (Algebraically, it follows 
from the equation r2 - t2 = -R2 that r2 < t2, and by differentiating we calculate that 
dt2 = (r2/t2) dr2.) Thus dx2 + dy2 - dt2 = r2 d02 + (dr2 - dt2) > 0. 

i," rdQO 

x ..r: 

y , (0,0, t) Y 

,t t 

(0,0,0) *(0,0,0) 
a b 

Figure 6 Comparison of two bases for the tangent space at P 

The geodesics turn out to be the intersections of the pseudosphere with planes 
through the origin, analogous to those on an ordinary sphere, although it is harder to 
see why this is so, and we won't prove it here. The pseudosphere is also homogeneous, 
and the angle sum of a triangle satisfies a completely analogous formula: 

A 
a + + y - r = _ R2' 

It follows that this sum is always less than ir. Of course, there is a different pseudo- 
sphere for each value of R. By analogy with the sphere, one might guess that a small 
value of R yields a pseudosphere of large negative curvature, while a large value of 
R gives a pseudosphere that is so little curved as to be nearly flat. However great or 
small the curvature, the sum of the angles in a triangle is still less than two right angles. 
(A book by B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov [3] gives a thorough 
discussion of both the sphere and pseudosphere.) 

Each sheet of the pseudosphere is a model of a geometric object called a hyperbolic 
plane. It would be nice to be able to see this plane looking more like a plane, without 
having to work with an object as complicated as the Lorentz metric. There is a planar 
map of the pseudosphere that shows angles accurately, obtained by a method called 
stereographic projection. A similar map is also available for the ordinary sphere. Any 
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map that preserves angle measure is called conformal. Since our tale of three circles 
involves angle measure, conformal maps will be a powerful tool. 

Stereographic projection 

The sphere To obtain a conformal mapping of the ordinary sphere onto the plane, 
project from any point of the sphere onto the plane tangent to its antipodal point. Any 
such map, or its inverse map from the plane to the sphere, is called a stereographic 
projection. Every circle on the sphere (not just the great circles) projects stereographi- 
cally to a circle or line (which may be thought of as a circle through oo) in the plane, 
and it maps to a line if and only if it passes through the point of projection (which 
maps to oo). Conversely, every line or circle in the plane is the image of a circle on 
the sphere. (See FIGURE 7, and note there that the center of a circle on the plane is 
not, in general, the projection of the center of the corresponding circle on the sphere, 
but rather the apex of the cone tangent to it.) These valuable properties may be proven 
by elementary arguments. (The arguments are outlined and nicely illustrated in Hilbert 
and Cohn-Vossen's classic book, Geometry and the Imagination [5, pp. 248-251].) 

Figure 7 Stereographic projection preserves angles and takes circles to circles or lines 

To see that stereographic projection from the sphere to the plane is conformal, 
consider FIGURE 8a, which shows the cross-section of the sphere cut off by a plane 
through the point of projection, N, its antipodal point, S, and another point P on the 
sphere; Jr(P) is the projected image of P, and A is the point where the cross-section 
of the plane tangent to the sphere at P intersects the tangent plane at S. 

An angle with vertex at P in the plane tangent to the sphere is cut by two planes 
intersecting along line NP. Since L7r(P)PA _ LP7r(P)A, these planes cut the same 
angle at 7r(P) in the horizontal plane through S, by symmetry. To see this, imagine an 
angle formed by two stiff planes of paper; if you snip at the same angle to the spine in 
either direction, the angle you make is the same. (The projected image of the angle is 
its reflection in the plane through A that is perpendicular to NPn(P).) 

FIGURE 8b illustrates the local behavior of stereographic projection. If Q is a 
nearby point on the tangent plane through P, then AN Q P is approximately similar to 
ANnr(P)r(Q). Therefore, stereographic projection is linearly approximated at each 
point P by a dilation (uniform scaling). The dilation factor varies with the latitude of 
P, increasing without bound as P approaches N, with a minimum value of 1 at S. 

VOL. 76, NO. 1, FEBRUARY 2003 23 



24 MATHEMATICS MAGAZINE 

N N 

-(Q) 

S A 7n(P) c(P) 
a b 

Figure 8 Stereographic projection is conformal and locally approximated by a dilation 

The pseudosphere To obtain a conformal map of the pseudosphere onto the plane, 
project each point of the hyperboloid model onto the horizontal plane through the 
South pole, (0, 0, -R) (that is, the plane t = -R), via the line connecting it to the 
North pole, (0, 0, R), as in FIGURE 9. This projection maps the southern hemisphere 
onto the interior of the disk of radius 2R centered at the origin, while the northern 
hemisphere, except for the North pole, goes onto the disk's exterior. The disk's interior 
is known as a Poincare Disk model of a hyperbolic plane, and its boundary is called the 
circle at infinity. It can be shown that each geodesic maps to a circle or line orthogonal 
to the circle at infinity (with the points of intersection removed); the geodesics through 
the poles go to lines. (See B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov [3] for a 
proof.) 

. % 

, :, \ Circle at infinity - 

/ * ' /I : 

/1 
* 

-'\ </ . 

/ I -- - - - "~Poi Disk Model 

Poincare Disk Model 

Figure 9 Projection of the hyperboloid model of the pseudosphere onto a plane 

The conformality of the projection of the hyperboloid model cannot be demon- 
strated by elementary geometric arguments because the angles on the hyperboloid are 
measured using a different bilinear form than the one used to measure angles in the 
plane. So to prove that angle measure is preserved, we must resort to calculation to 
compare the angles between tangent vectors to curves, before and after projection. The 
reader who wishes to just believe us and avoid the technicalities involved may skip the 
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calculation below without any loss of continuity. For those who wish to venture in, the 
proof provides a nice application of calculus techniques to geometry. 

Proof that projection to the Poincare disk model is conformal We restrict our 
attention to the southern hemisphere; the proof for the northern hemisphere is similar. 
Let Jr denote the projection map, extended to the region t < R, and viewed as a map 
onto R12 by ignoring the last coordinate (-R) in the image. Suppose curves a and B 
intersect at P = (x, y, t). The derivative of 7r at P, Dr (P), carries vectors tangent to 
a and P at P to vectors tangent to their projected images at r (P) (by the chain rule). 

Let (vp, Wp)L denote the Lorentz product of tangent vectors vp and wp at P, that is, 

((xl, Yl, tl), (x2, Y2, t2))L = X1X2 + Y1Y2 - tt2. 

We sketch a proof that, if vp and wp are tangent to the hyperboloid, then Dr (P)(vp) - 
D7(P)(wp) = [4R2/(R - t)2](vp, Wp)L. In other words, the dot product of the im- 
ages is just scaled by a constant factor from the Lorentz product of the preimages. It 
follows that the angle, 0, between vp and Wp, which is determined by 

(Vp, Wp)L 
cOos = 1 1 

(Vp, Vp)L (Wp, Wp) 

is equal to the angle, if, between Dr(P)(vp) and DZr(P)(wp), which is deter- 
mined by 

Dn(P)(vp) . D7r(P)(wp)) 
cos 41 = 1 

[D7r(P)(vp) . D7r(P)(vp)] [DJr(P)(Wp) . D7T(P)(Wp)]2 

since the scaling factor cancels out. In contrast to the sphere, the scaling factor de- 
creases as P moves away from S (t decreases), with a maximum value of 1 at S. 

N=(O,O,R) 

2R 

g(P). R-t 
:--- / t=-R 

P=(x,y,t)/ 
r 

Figure 10 Effect of the projection n on the radial coordinate 

Referring to similar triangles, as in FIGURE 10, we see that the image under 7T of 
the point P with cylindrical coordinates (r, 0, t) is the point whose polar coordinates 
are (2R, 0). The derivative at P of the conversion from Cartesian to cylindrical co- 
ordinates takes (dr, rdO, dt) to (dr, dO, dt). If 0 : R3 -> IR2 is the map (r, 0, t) - 

(2R 0), its derivative (or Jacobian, if you prefer) at (r, 0, t) is 

2R o 2Rr\ 

Do (r, 0, t) =(Rt (R-t)2 
'0 1 0' 
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Applying D (r, 0,t) to (dr, dO, dt), followed by the derivative at 0(r,0, t) = 

(2R, 0) of the conversion from polar back to Cartesian coordinates, we calcu- 
late (thanks to the ever-valuable chain rule) that D7r(P)(dr, rdO, dt) = 2R (dr + 

t, rd0). 
For any point P on the hyperboloid, r2 - t2 = -R2, and for any vector tan- 

gent to the hyperboloid at P, dt = (r/t)dr. After some simplification using these 
substitutions, we find that D7r(P)(dr, rd0, (rt)dr)= 2R(-(R/t)dr, rd). The 
reader can now check that for two tangent vectors at P, D7r(P)(vp) ? Dr(P)(wp) = 
[4R2/(R - t)2](Vp, Wp)L, as stated. 

Sequences of stereographic projections Stereographic projection is an indispens- 
able tool for transforming geometric models without changing the angles between 
geodesics. In particular, it provides us with another celebrated model of the hyperbolic 
plane called the Poincare half-plane. To obtain it, first project the Poincare disk of ra- 
dius two from a horizontal plane onto the southern hemisphere of the unit sphere (and 
its complement, including the point at oo, onto the other hemisphere). Then project 
onto any vertical plane tangent to the equator. The image of the circle at infinity under 
this sequence of projections is called the line at infinity. Each half-plane is an image 
of a hyperbolic plane, as in FIGURE 11. 

Figure 11 Conformal transformations between the Poincare disk, hemisphere, and 
Poincar6 half-plane models of hyperbolic geometry 

By a sequence of two stereographic projections from different points, we also obtain 
a conformal map of the Euclidean plane in which the images of the geodesics are either 
lines or circles. See FIGURE 12. 

In summary, we now have maps of the plane, sphere, and pseudosphere in which 
the geodesics are represented by lines and circles. Just as a map of the earth must be 
distorted in order to print it on the flat pages of an atlas, our maps distort the true 
distances between points in the geometric objects they depict. The art of map-making 
revolves around choosing a projection whose particular type of distortion allows the 
map to be useful for its intended purpose. For example, the famous Mercator projection 
of the earth's surface is useful to navigators because it accurately depicts the compass 
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Figure 12 Euclidean geometry on the sphere 

bearing between any two points. (McCleary [6, chapter 8biS] gives a nice discussion of 
map projections.) 

Since we are interested in the properties of angle measure, we have chosen to view 
our circles through conformal maps, which render the true angles between smooth 
curves. The question remains: Given a trio of circles that intersect in pairs, how can 
we interpret the configuration as a geodesics on a map of one of the geometries we 
have studied? Is such an interpretation even possible? 

Choosing a geometry: a proof of the theorem 

Recall that P is the intersection of the three lines determined by the pairwise intersec- 
tions of the three circles. We will show that, depending on the location of P relative 
to the circles, there is a conformal map that takes the circles to lines of a standard 
geometric model-a model for which we know a great deal about angle sums. 

Case 1: P lies on all three circles. In this case consider a sphere tangent to the plane 
with South pole at P, and a second plane tangent to this sphere at the North pole, as 
in FIGURE 12. The images of our three circles on the sphere are circles through the 
South pole. If we project again, this time from the South pole of the sphere onto the 
second plane, these circles are taken to straight lines. Thus, cl, c2, and c3 are geodesics 
in a conformal planar model of Euclidean geometry, and the sum of the angles of the 
triangle they form is 180?. 

Case 2: P lies outside all three circles. We already studied the special case where 
the three lines determined by pairwise intersections of the circles are parallel; this 
happens when the centers of all three circles are collinear, and that line was seen to be 
the boundary line of a hyperbolic plane. Having dispensed with that case, we assume 
that the lines are concurrent at a point P lying outside of all three circles. In this case, 
the Lemma presents us with a circle, d, that is orthogonal to all three circles. Thus, 
each arc of the circles lying inside or outside d is a geodesic in a model of a hyperbolic 
plane, and thus the sum of the angles of any triangle they form is less than 180?. 

Case 3: P lies inside all three circles. Consider the family of spheres (of varying 
size) tangent to the plane with South pole at P. Consider how the area of the stereo- 
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graphic projection of the disk bounded by cl onto each of these spheres compares to 
the surface area of the sphere: if the sphere is very small, the projected region will 
have area more than half that of the sphere (in fact, it will include the entire Southern 
hemisphere); if the sphere is very large, the projected area will be less than half the 
surface. This is just a matter of having cl lie inside or outside the preimage of the 
equator on the plane. (See FIGURE 13.) Allowing the sphere to vary continuously, we 
see that there is a unique sphere, S, such that the projected area on S is exactly half the 
surface area. (For an alternative argument, see the third remark below.) Consequently, 
the image on S of cl is a great circle. 

Figure 13 The family of spheres tangent to the plane at P 

We claim that the images on S of c2 and C3 are also great circles. It suffices to prove 
this for c2, as the same argument works for C3. To do so, observe that the image of 
112 under stereographic projection is a meridian, that is, a great circle passing through 
the North and South poles of the sphere. Since the image of cl is also a great circle, 
the images of the points of intersection of cl with 112 are antipodal. Since the points 
of cl n 112 also lie on c2, it follows that the image of c2 is a great circle. FIGURE 14 
illustrates this. 

Figure 14 The images of the circles on the sphere S are great circles 
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We have thus shown that the images on S of the three circles are great circles; that 
is, they are spherical geodesics. Thus c1, c2, and c3 are geodesics in a conformal planar 
model of spherical geometry, and the sum of the angles of any triangle formed by them 
is greater than 180?. 1 

REMARK. That Euclidean geometry occurs only in the instance that point P lies 
exactly on the circles is an illustration of the fact that our familiar flat geometry is 
just a single point in the spectrum of geometries, from the sphere of large radius R, 
to the flat plane, where R is effectively infinite, to the pseudosphere, whose radius is 
imaginary in the model we have shown. 

REMARK. Using the sequence of stereographic projections described earlier, we 
may transform the general picture for Case 2 into the half-plane picture. 

REMARK. Although we like the continuity argument in Case 3 of the Theorem, it 
may be avoided as follows. Let s = /-'P(P). The sphere S in the above proof is the 
one that has radius s/2. To show this, consider, for each of the circles c1, c2, and C3, the 
chord through P that is perpendicular to the radius through P. Each of these chords has 
length 2s and midpoint P. Let e be the circle centered at P with radius s. This circle 
projects stereographically to the equator of S, and cl, c2, and C3, which intersect e at 
diametrically opposite points, also project to great circles. This alternative argument 
emphasizes the parallels between Cases 2 and 3. 

REMARK. The theorem remains true if circle is understood in its more general 
sense to include straight lines as well. 

We invite the reader to extend the theorem to the limiting cases in which two or 
more of the circles are tangent. The possibilities are illustrated in FIGURE 15. Case I 

I 

Figure 15 The possibilities for two circles to be tangent 
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of the figure leads to Euclidean geometry, when viewed with the right map: One vertex 
of the triangle is thrown out to infinity by the map that takes the circles to straight lines; 
hence, two sides of the triangle become parallel lines. The possibilities in Case II are 
hyperbolic, with one or more vertices of the triangle lying on the circle (or line) at 
infinity. What is the measure of an angle whose vertex lies on the circle at infinity? 
Note that none of the limiting cases is spherical. 

Changing your point of view: a transformational approach 

We are indebted to Keith Burs for pointing out the following very elegant formulation 
and proof of the Theorem. His proof uses the group of Mobius transformations of the 
extended complex plane (that is, the plane, regarded as the field of complex numbers, 
together with a point at oo). Mobius transformations are invertible, bicontinuous, and 
conformal, and take generalized circles (with lines regarded as circles through oo) to 
circles. Moreover, given any two ordered sets consisting of three points each, there 
is a (unique) Mobius transformation taking each point of one set to the corresponding 
point of the other. (The excellent, very readable text on geometry from a Kleinian point 
of view by Brannan, Esplen, and Gray contains a thorough discussion of the Mobius 
group and its geometric properties [1, Chapter 5].) 

In particular, and this is all we will need, there is a Mobius transformation taking 
any given point to oo. As we have seen, a transformation with the required properties 
can be constructed by composing a pair of stereographic projections. 

Consider a curvilinear triangle ABC formed by the three circles cl, c2, and c3. 
Without loss of generality, assume that A lies on cl and c2, and let A' be the other 
point of intersection of cl and c2. We then have three possibilities for the positions of 
A and A' with respect to the third circle, C3, which correspond to the three cases of 
the Lemma and Theorem: A' lies on C3; A' lies on the opposite side of c3 from A; or 
A' lies on the same side of C3 as A. By simply changing our point of view, placing A' 
at oc, we can discern by inspection how the angle sum of triangle ABC compares to 
180?. Although this approach does not demonstrate the underlying global geometry in 
which the circles are geodesics, it does have the advantage of being delightfully simple 
and direct. 

THEOREM. (ALTERNATIVE FORMULATION) Let cl, c2, and c3 be three circles in 
the plane, with each pair intersecting in two distinct points. Then exactly one of the 
following three conditions holds and determines the sum of the angles of any triangle 
formed by the three circles: 

1. the intersection of each pair of circles contains a point of the third circle, in which 
case the sum of the angles is 180?; 

2. the intersection of each pair of circles lies entirely inside or outside the third circle, 
in which case the sum of the angles is less than 180?; or, 

3. the intersection of each pair of circles contains one point inside and one point out- 
side the third circle, in which case the sum of the angles is greater than 180?. 

Proof. Let A, B, and C be the vertices of a triangle formed by cl, C2, and C3, with 
{A, A'} = cl n c2, as in the paragraph preceding the statement of the theorem. The 
angle sum of the triangle does not depend on which pair of circles we consider, so it 
suffices to show that this sum is determined by the positions of A and A' relative to c3. 

Apply a M6bius transformation, gu, that takes A' to oo. Under this transformation, 
the images of cl and c2, which pass through A', are lines. If A' lies on C3, then the 
image of C3 is also a line, hence the angle sum of the image of triangle ABC is 180?. 

30 MATHEMATICS MAGAZINE 



VOL. 76, NO. 1, FEBRUARY 2003 31~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Case 1 

A 

BL(B) 

a(C) 

Case 2 

'(AC 

Case 3 

Figure 16 The effect of a Mobius transformation, IL, taking A' to oo 

If A and A' lie on the same side of C3, then the image of c3 is a circle with the image of 
A outside it, since oo is outside; hence the angle sum of the image of triangle ABC is 
less than 180?. If A and A' lie on opposite sides of C3, then the image of c3 is a circle 
with the image of A inside it; hence the angle sum of the image of triangle ABC is 
greater than 180?. The three possibilities are illustrated in FIGURE 16. O 

Conclusion 

Each of the classical geometries, Euclidean, spherical, and hyperbolic, has a variety 
of conformal representations on the plane, obtained by stereographic projection. Rec- 
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ognizing these representations enabled us to classify the generalized triangles whose 
sides are either segments or circular arcs as belonging to one of three types of geome- 
tries, allowing us to make the correct conclusion about the sum of the angles. Finally, 
by using a group of conformal transformations of the extended plane, we were able to 
refine our solution to be very simple, although perhaps less informative. Our success is 
just one example of the value of studying noneuclidean geometries and transformation 
groups. 
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Pete, Repete, and One Bagel 

Pete: Do you want a bagel? 
Repete: Oh, no, I couldn't eat that much. 

Pete: I could halve the bagel. 
Repete: Yes, you should have it. 

Pete: No, if we halve the bagel, we could each have half a bagel. 
Repete: Oh, OK. But that brings up a tricky question. 

Pete: Yes? 

Repete: Before you halve a bagel, a bagel will have a hole. After you halve the bagel, 
does half a bagel have half a bagel hole, or it is a whole hole? 

Pete: A whole! 

Repete: But if half a bagel is to have a whole hole, then when you halve a whole bagel, 
you don't, in fact, halve a bagel hole, since in each half you have a whole hole, 
which is two holes. 

Pete: Mysterious! So when you halve a bagel, you get to have a bagel half and a 
bagel hole. 

Repete: Right! This means that when you have a whole bagel, you get half the bagel 
holes you get when you halve a whole bagel! 

Pete: Holy Cow! 
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