
108 MATHEMATICS MAGAZINE

Integrals Don’t Have Anything to Do with
Discrete Math, Do They?

P . MARK KAYLL
University of Montana

Missoula, MT 59812-0864
mark.kayll@umontana.edu

To students just beginning their study of mathematics, the subject appears to come in
two distinct flavours: continuous and discrete. The former is embodied by the calcu-
lus, into which many math majors delve extensively, while the latter has its own in-
troductory course (often entitled Discrete Mathematics) whose overlap with calculus
is slight. The distinction persists as we learn more mathematics, since most advanced
undergraduate math courses have their focus on one side or the other of this apparent
divide.

This article attempts to bridge the divide by describing one surprising connection
between continuous and discrete mathematics. Its goal is to convince readers that the
two worlds are not so very far apart. Though they may frequently feel like polar oppo-
sites, there are also times when they join to become one, like antipodal points in pro-
jective space. Therefore, any serious study of discrete math ought to include a healthy
dose of the continuous, and vice versa.

Before we are done, various players from both worlds will make their appearance:
rook polynomials, derangements, the gamma function, and the Gaussian density (just
to name the headliners).

Teaser To whet the reader’s appetite, we begin with a challenge.

PROBLEM 1. Give a combinatorial proof that∫
∞

0
(t3
− 6t2

+ 9t − 2)e−t dt = 1; (1)

i.e., count something that, on one hand, is easily seen to number the left side of (1) and
on the other, the right.

For a delightful treatment of combinatorial proofs in general, see [4].
At first blush, Problem 1 may appear to be out of reach—a combinatorial proof of

an integral identity—what in heavens should we count? The answer provides part of
the fun of writing (and hopefully reading) this article.

Entities: continuous and discrete

After introducing our objects of study, we reveal some of their connections in the
next few sections, and also present a solution to Problem 1. In an attempt to make the
article self-contained, we include an appendix containing some basic facts and other
curiosities about these objects.
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Integrals The integral on the left side of (1) belongs to a family of integrals enjoying
discrete connections. The family’s matriarch is Euler’s gamma function, which can be
defined, for 0 < x <∞, by

0(x) :=
∫
∞

0
t x−1e−t dt. (2)

One can check that this improper integral converges for such x ; see, e.g., [2, pp. 11–
12]. (In fact, 0 need not be confined to the positive real numbers—it is possible to
extend its definition so that 0 becomes a meromorphic function on the complex plane,
with poles at the origin and each negative integer; see, e.g., [1, p. 199] or [11, p. 54]—
but we’ll restrict our attention to positive real x .)

Some close cousins of the gamma function are certain ‘probability moments.’ For
integers n ≥ 0, the nth moment (of a Gaussian random variable with mean 0 and vari-
ance 1, i.e., a standard normal random variable) is defined by

Mn :=
1
√

2π

∫
∞

−∞

tne−t2/2 dt.

These integrals also converge (see, e.g., [8, p. 148]), and though probability language
enters in their naming, we won’t be making much use of this connection. Since we do
need the fact that M0 = 1 (see Theorem 4), we present a standard proof of this identity
in the Appendix (Lemma 6).

Graphs The right side of (1)—i.e., the number 1—counts the ‘perfect matchings’
in a certain graph. While we shall assume that the reader is familiar with graphs, we
nevertheless introduce the few required elementary notions. Any standard graph theory
text should suffice to close our expositional gaps; see, e.g., [5].

Recall that a graph G = (V, E) consists of a finite set V (of vertices), together
with a set E of unordered pairs {x, y} (edges) with x 6= y and both of x, y ∈ V . (Such
graphs are called simple graphs in [5, p. 3].) A graph is complete if, for each pair
x, y of distinct vertices, the edge {x, y} appears in E . FIGURE 1 depicts the complete
graphs with 1 ≤ |V | ≤ 6 and introduces the standard notation Kn for the complete
graph on n ≥ 1 vertices.

K3 K4 K5 K6K1 K2

Figure 1 Complete graphs on up to six vertices

The second graph family of primary interest in this article is the collection of bipar-
tite graphs G, i.e., those for which the vertex set admits a partition V = X ⊕ Y into
nonempty sets X, Y such that each edge of G is of the form {x, y}, with x ∈ X and
y ∈ Y . One often forms a mental picture of a bipartite graph by imagining two rows
of dots—a row for X and a row for Y —together with a collection of line segments xy
joining an x ∈ X to a y ∈ Y whenever {x, y} ∈ E . In the next definition, we fix two
positive integers n, m. The bipartite graph (X ⊕ Y, E) for which |X | = n, |Y | = m,
and E consists of all nm possible edges between X and Y is called a complete bipartite
graph and denoted by Kn,m . The bipartite graphs arising in this article are the complete
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bipartite ones for which n = m (for n ≥ 1) and their spanning subgraphs, i.e., those
bipartite graphs (X ⊕ Y, E) with |X | = |Y | = n. It’s worth noting that a subgraph H
of G is a spanning subgraph exactly when they share a common vertex set; the edge
set of H may form any subset of the edge set of G, including the empty set. FIGURE 2
depicts a few small bipartite graphs.

Y

(c) a spanning subgraph of K3,3(a) a bipartite graph

X

(b) the complete bipartite graph K3,3

Figure 2 Bipartite and complete bipartite graphs

A first brush between continuous and discrete For the gamma function (2), it is
easy to check that 0(1) = 1, and integration by parts yields the recurrence

0(x + 1) = x0(x), (3)

valid for positive real numbers x . It follows by mathematical induction that each non-
negative integer n satisfies 0(n + 1) = n!; i.e., the gamma function generalizes the
factorial function to the real numbers.

Given this generalization, a natural question to ponder might be: What values does
0 take on at half-integers? The reader might enjoy showing that

0

(
1

2

)
=
√
π (4)

and then using (3) to prove that

0

(
n +

1

2

)
=
(2n)!

√
π

4nn!

whenever n is a nonnegative integer. (Corollary 7 in the Appendix provides a key step
in this exercise.) The ease in determining 0 at half-integers belies the dearth of known
exact values; for example, no simple expression is known for 0(1/3) or 0(1/4)—see
[11, p. 55], or, for a more recent and specific discussion, [15].

What good, we might ask, is a continuous version of the factorial function? One
answer is that a careful study of 0 can be used to establish Stirling’s approximation
for n!:

n! ∼
√

2πn
(n

e

)n
, (5)

published by James Stirling [18, p. 137] in 1730. (Here and below, the symbol ∼
means that the ratio of the left to the right side tends to 1 as n →∞.) See, e.g., [14]
for an elementary proof of (5) starting from the definition (2) of 0. A complex-analytic
proof, based on the extension of 0 to Cr {0,−1,−2, . . .} to which we alluded earlier,
appears in [1, pp. 201–204]. However it’s reached, the estimate (5), involving two of
the most famous mathematical constants and invoking only basic algebraic operations,
is no doubt beautiful. Moreover, it is useful any time one wants to gain insight into the
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growth rate of functions involving factorials. For example, using (5), one easily shows
that (

2n

n

)
∼

22n

√
πn
,

and so learns something about the asymptotics of the Catalan numbers
(2n

n

)
/(n + 1)

(see, e.g., [17, pp. 219–229] for more on this pervasive sequence).
Our purpose is to refute the first part of this article’s title, and as we move in that

direction, we can’t resist sharing a couple more fun facts about 0 that enhance the
stature of 0 in the gallery of basic mathematical functions. First, as long as x is not an
integer, we have

0(x)0(1− x) =
π

sin(πx)
,

which generalizes (4). This ‘complement formula’ was first proved by Leonhard Euler;
see, e.g., [1, pp. 198–199] or [11, p. 59] for modern proofs. Second, if

ζ(x) :=
∞∑

k=1

1

kx

denotes the Riemann zeta function, then whenever 0(x) is finite, we have

ζ(x)0(x) =
∫
∞

0

t x−1

et − 1
dt, (6)

which bears a striking resemblance to (2); again, see [1, p. 214] or [11, pp. 59–60] for
proofs. Because of ζ ’s central role in connecting number theory to complex analysis,
the relation (6) opens deeper connections of 0 to number theory (beyond those stem-
ming from the factorial function). Viewing number theory as falling within the discrete
realm, we see in (6) a further refutation of this article’s title.

Counting perfect matchings in Kn,n

A matching M in a bipartite graph G = (X ⊕ Y, E) is a subset M ⊆ E such that the
edges in M are pairwise disjoint. We think of M as ‘matching up’ some members of
X with some members of Y . If every x ∈ X appears in some e ∈ M , and likewise for
Y , then we call M a perfect matching. It is a simple exercise to show that if G contains
a perfect matching, then |X | = |Y |, so that G is a spanning subgraph of some Kn,n .
FIGURE 3 highlights one matching within each of the graphs in FIGURE 2.

(c)(a) (b)

Figure 3 Matchings in the graphs of FIGURE 2 indicated by bold edges; those in (b) and
(c) are perfect.
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Given a bipartite graph G, we might be interested to know how many perfect match-
ings it contains; we use (G) to denote this number.1 Let’s warm up by asking for the
value of (Kn,n); a moment’s reflection shows that for each integer n ≥ 1, the an-
swer is n!. (To see this, continue to denote the ‘bipartition’ by (X, Y ), and notice that
the perfect matchings of Kn,n are in one-to-one correspondence with the bijections
between X and Y .) Since n! = 0(n + 1), we have proven our first result.

PROPOSITION 2. (Kn,n) =

∫
∞

0
tne−t dt.

If we replace Kn,n by a different bipartite graph, how must we modify the formula
in Proposition 2? It turns out that a so-called ‘rook polynomial’ should replace the
polynomial tn .

Rook polynomials Given a graph G and an integer r , we denote by µG(r) the num-
ber of matchings in G containing exactly r edges.

EXAMPLE 1. (THE GRAPH G = K3,3 − {{x1, y1}, {x2, y2}, {x3, y3}}) This is the
graph in FIGURE 2(c). Since the empty matching contains no edges, we have µG(0) =
1; since each singleton edge forms a matching, we have µG(1) = 6, and since G con-
tains two perfect matchings, we have µG(3) = 2. Fixing a vertex x , we see that there
are three matchings of size two using either of the edges incident with x and three
more two-edge matchings not meeting x ; thus µG(2) = 9.

Now suppose that G is a spanning subgraph of Kn,n . The rook polynomial of G is
defined by

RG(t) :=
n∑

r=0

(−1)rµG(r)t
n−r .

See [10, p. 8] or [16, pp. 164–166] for the etymology of this term.

EXAMPLE 1. (CONTINUED) Based on our observations in the first part of this ex-
ample, we see that

RG(t) = t3
− 6t2

+ 9t − 2;

we’re getting a little ahead of ourselves, but this is the polynomial appearing in the
integrand in Problem 1.

EXAMPLE 2. (EMPTY GRAPHS) If G is the empty graph on 2n vertices (i.e., |V | =
2n and E = ∅), then

µG(r) =

{
0 if r > 0
1 if r = 0,

so that RG(t) = tn; keeping ahead of ourselves, notice that this polynomial appears in
the integrand in Proposition 2.

EXAMPLE 3. (PERFECT MATCHINGS) If G consists of n pairwise disjoint edges
(i.e., G is induced by a perfect matching), then one can easily see that µG(r) =

(n
r

)
for

0 ≤ r ≤ n. Thus, the binomial theorem shows that RG(t) = (t − 1)n .

1We chose this notation because (whether we write it in English or Greek!) the letter XI ( ) resembles a
perfect matching in a graph of order six, and, conveniently enough, six is a perfect number.
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Continuing to let G denote a spanning subgraph of Kn,n , we now define its bipartite
complement G̃; this graph shares the vertex set of G and has for edges all the edges of
Kn,n that are not in G. We’re ready to state a generalization of Proposition 2. To avoid
possible confusion as to which graph is being complemented, we use next H instead
of G to denote a generic graph.

THEOREM 3. (GODSIL [9, THEOREM 3.2]; JONI AND ROTA [12, COROLLARY

2.1]) If H is a spanning subgraph of Kn,n , then

(H) =
∫
∞

0
RH̃ (t)e

−t dt.

The proof of Theorem 3 is beyond our scope, but we’ll present two applications in
the following sections; [7] presents a recent proof. Theorem 3 generalizes Proposi-
tion 2 because the bipartite complement of Kn,n is the empty graph on 2n vertices; see
Example 2. Further generalizations of Theorem 3 are discussed in [10, pp. 9–10].

Solution to Problem 1. As noted in Example 1, the integral in Problem 1 is∫
∞

0
(t3
− 6t2

+ 9t − 2)e−t dt =
∫
∞

0
RG(t)e

−t dt, (7)

where, recall, G is the graph depicted in FIGURE 2(c) and defined at the start of Ex-
ample 1. Thus, to bring Theorem 3 to bear, it will suffice to determine a spanning
subgraph H of K3,3 such that H̃ = G. The graph H in FIGURE 4 does the trick.
Now ask: how many perfect matchings are contained in H? The answer is obviously
(H) = 1 because H is induced by the edges of a perfect matching. On the other hand,

Theorem 3 tells us that (H) coincides with (7) because H̃ = G.

H

Figure 4 A graph H with H̃ = G from FIGURE 2(c)

The fruit borne by the instantiation of Theorem 3 to the graphs in Examples 1 and 2
(respectively, a solution to Problem 1 and a proof of Proposition 2) might provide
inspiration to consider this theorem in yet another instance, this time with H̃ being the
graph(s) in Example 3. This application of Theorem 3 takes us down an atypical path
to a commonly studied class of combinatorial objects.

Derangements A derangement σ of a set S is a permutation of S with no fixed
points; i.e., σ : S → S is a bijection such that σ(x) 6= x for each x ∈ S. Counting
the number of derangements of a finite set is a standard problem in introductory
combinatorics and probability texts. We’ll let Dn denote the set of derangements of
{1, 2, . . . , n} and dn = |Dn|. We can easily determine these parameters for the smallest
few values of n; TABLE 1 displays the results. We leave it as an exercise to show that
d5 = 44 and (for the punishment gluttons) d6 = 265. But what is the pattern? Perhaps
surprisingly, one way to obtain a general expression for dn is to invoke Theorem 3.

Consider the bipartite graph G obtained from Kn,n by removing the edges of a per-
fect matching; say, G = Kn,n − {{x1, y1}, {x2, y2}, . . . , {xn, yn}}. Notice that each per-
fect matching in G corresponds to exactly one derangement of {1, 2, . . . , n} and vice
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TABLE 1: Derangement numbers and their corresponding
derangements for 1 ≤ n ≤ 4

n dn Dn

1 0 ∅
2 1 {21}
3 2 {231, 312}
4 9 {2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321}

versa. Thus, dn = (G). Since the bipartite complement of G is the graph considered
in Example 3, Theorem 3 implies that

dn =

∫
∞

0
(t − 1)ne−t dt. (8)

If we separate the integral and change variables on the first subinterval, an evaluation
of 0 presents itself:

dn =

∫
∞

1
(t − 1)ne−t dt +

∫ 1

0
(t − 1)ne−t dt

=

∫
∞

0
xne−(x+1) dx +

∫ 1

0
(t − 1)ne−t dt

= e−10(n + 1) + En, (9)

where we now view the second integral as an error term En . It turns out that En doesn’t
contribute much to dn; since e−t < 1 on the interval (0, 1), we obtain

|En| ≤

∫ 1

0

∣∣(t − 1)ne−t
∣∣ dt <

∫ 1

0
(1− t)n dt =

1

n + 1
.

This shows that for each n ≥ 1, the error satisfies |En| < 1/2, and it follows from (9)
that dn is the integer closest to e−10(n + 1), i.e., to n!/e.

Remarks The nonstandard derivation of dn presented above is due to Godsil [10,
pp. 8–9]. More typical approaches (e.g., [6, pp. 77–78] or [13, pp. 71, 109–110])—
that apply either the principle of inclusion-exclusion or generating functions—lead to
a perhaps more familiar expression

dn = n!
n∑

k=0

(−1)k

k!
(10)

for the derangement numbers. Starting from (8), this ‘standard’ expression (10) for dn

requires even less effort to derive than the former. We first apply the binomial theorem,
obtaining

dn =

∫
∞

0

(
n∑

k=0

(
n

k

)
(−1)k tn−k

)
e−t dt

= n!
n∑

k=0

(−1)k

k! (n − k)!

∫
∞

0
tn−ke−t dt, (11)
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and then invoke the definition (2) of 0 to replace each integral by (n − k)!, after which
(11) becomes (10). Alternately, via the MacLaurin series for 1/e, (10) is easily seen to
be equivalent to the ‘integer closest to n!/e’ description obtained via Godsil’s deriva-
tion.

Counting perfect matchings in Kn

Since matching enumeration is not confined to the realm of bipartite graphs, it is nat-
ural to seek analogues of Proposition 2 and Theorem 3 for determining (Kn) and,
more generally, (G) for a spanning subgraph G of Kn . Here again, we will expose
the speciousness of this article’s title.

A matching M in a graph G = (V, E) is defined as it is in a bipartite graph, and,
as before, if each v ∈ V is an end of some e ∈ M , then M is called perfect. FIGURE 5
displays all of the perfect matchings admitted by K4 and some of those admitted by K6.
The bracketed numbers in FIGURE 5(b) indicate how many different perfect matchings
result under the action of successive rotation by 60◦; in this way, all 15 = 2+ 3+ 6+
3+ 1 perfect matchings of K6 are obtained.

(a)

[2] [3] [6] [3] [1]

(b)

Figure 5 (a) All three perfect matchings in K4; (b) five of fifteen perfect matchings in K6

Following our earlier line of inquiry, we ask how many perfect matchings are con-
tained in Kn . Since matchings pair off vertices, the question is interesting only when
n is even; say n = 2m for an integer m ≥ 1. Let V := V (K2m) = {1, 2, . . . , 2m}. To
determine a matching M , it is enough to decide, for each vertex i ∈ V , with which ver-
tex i is paired under M . There are (2m − 1) choices for pairing with vertex 1. Having
formed this pair, say {1, j}, it remains to decide how to pair the remaining (2m − 2)
vertices. Selecting one of these, say k, there are (2m − 3) choices for pairing with ver-
tex k, namely, any member of V r {1, j, k}. Continuing in this fashion and applying
the multiplication rule of counting, we find that

(Kn) =

{
0 if n is odd
(2m − 1)(2m − 3) · · · 5 · 3 · 1 if n = 2m for an integer m ≥ 1.

(12)

The last expression, reminiscent of a factorial, is sometimes called a double factorial
which is defined, for a positive integer n, by n!! := n(n − 2)(n − 4) · · · (2 or 1)—see,
e.g., [20]. This notation shortens (12) to

(Kn) =

{
0 if n is odd
(n − 1)!! if n is even.

(13)
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When n is even (n = 2m), we have

(K2m) = (2m − 1)!! =
(2m)!

2mm!
, (14)

which leads to an alternate way to count (K2m): think of determining a matching
by permuting the elements of V in a horizontal line (in (2m)! ways) and then simply
grouping the vertices into pairs from left to right. Of course, this over-counts (K2m)—
by a factor of m! since the resulting m matching edges are ordered, and by a factor of
2m since each edge itself imposes one of two orders on its ends. After correcting for
the over-counting, we arrive at (14) and thus have a second verification of (12).

As a final refutation of our title, we’ll show that (Kn) can also be expressed as an
integral.

THEOREM 4. (GODSIL [9, THEOREM 1.2]; AZOR ET AL. [3, THEOREM 1])

(Kn) =
1
√

2π

∫
∞

−∞

tne−t2/2 dt .

Proof. The right side of the identity is the moment Mn . Since the integrand of each
Mn , for odd n, is an odd function, we have

Mn = 0 whenever n is odd. (15)

For even n, say n = 2m, we apply induction. Since M0 is the area under the curve for
the probability density function of a standard normal random variable, we have

M0 = 1; (16)

the proof of Lemma 6 below verifies this directly.
Fix an integer m ≥ 1; starting with M2m−2 and integrating by parts yields the recur-

rence

M2m = (2m − 1)M2m−2 for m ≥ 1. (17)

Now

M2m = (2m − 1)!! for m ≥ 1 (18)

follows easily from (16) and (17) by induction. Comparing (15) and (18) with (13)
shows that Theorem 4 is proved.

Just as Proposition 2 generalizes to Theorem 3, so too does Theorem 4 generalize.
For a given (not necessarily bipartite) graph G (now with n vertices instead of the
earlier 2n in the bipartite setting), the matchings polynomial is defined by PG(t) :=∑
bn/2c
r=0 (−1)rµG(r)tn−2r . To determine (G), we need to replace the factor tn in the

integrand of Theorem 4 by the matchings polynomial of the complementary graph G
of G. We close this section by stating this analogue of Theorem 3 precisely.

THEOREM 5. (GODSIL [9, THEOREM 1.2]) If G is a spanning subgraph of Kn ,
then

(G) =
1
√

2π

∫
∞

−∞

P
G
(t)e−t2/2 dt.

A proof of Theorem 5 may be found in [10, p. 6].
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Appendix

After establishing that the 0th moment M0 = 1 (which was needed in the proof of
Theorem 4), we indicate how to obtain (4). Evaluating the integral in the definition of
M0 is an enjoyable polar coordinates exercise.

LEMMA 6.
∫
∞

−∞

e−u2/2 du =
√

2π.

Proof. Denoting the integral by J, we have

J2
=

(∫
∞

−∞

e−u2/2 du

)(∫
∞

−∞

e−v
2/2 dv

)
=

∫
∞

−∞

∫
∞

−∞

e−(u
2
+v2)/2 du dv (19)

=

∫ 2π

0

∫
∞

0
r e−r2/2 dr dϑ, (20)

where we used Tonelli’s Theorem to obtain (19) (see, e.g., [21, Theorem 6.10]) and
a switch to polar coordinates to reach (20). Since the inner integral here is unity, the
result follows.

Perhaps the simplicity of the preceding proof coloured the views of Lord Kelvin
(1824–1907), as hinted in the following anecdote from [19, p. 1139]:

Once when lecturing he used the word “mathematician,” and then interrupting
himself asked his class: “Do you know what a mathematician is?” Stepping to
the blackboard he wrote upon it:—∫

∞

−∞

e−x2
dx =

√
π.

Then, putting his finger on what he had written, he turned to his class and said:
“A mathematician is one to whom that is as obvious as that twice two makes four
is to you. Liouville was a mathematician.” Then he resumed his lecture.

At any rate, now the relation (4) is almost immediate:

COROLLARY 7. 0(1/2) =
√
π.

Proof. By definition, 0(1/2) =
∫
∞

0 t−1/2e−t dt . On putting t = u2/2, we find that

0(1/2) =
√

2
∫
∞

0 e−u2/2 du, or, since the last integrand is an even function, 0(1/2) =
√

2
∫
∞

−∞
e−u2/2 du/2. Now Lemma 6 gives the value of this integral to confirm the

assertion.

Concluding remarks

Proposition 2 and Theorem 4 present just two examples of combinatorially interesting
sequences that can be expressed in the form

∫
�

tn dν for some measure ν and space�.
This topic is considered in detail in [10, Chapter 9].
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What is one to make of these connections between integrals and enumeration? We
don’t claim that integrals provide the preferred lens for viewing these counting prob-
lems. For example, nobody would make the case that the integral in Theorem 4 is the
‘right way’ to determine (Kn) because the explicit formula (12) provides a direct
route. However, perhaps surprisingly, integrals do offer one lens. And this connec-
tion between the continuous and the discrete reveals just one of the myriad ways in
which mathematics intimately links to itself. These links can benefit the mathematical
branches at either of their ends. The application to counting derangements illustrates
how continuous methods can shed light on a discrete problem, while Problem 1 and its
solution indicate how a discrete viewpoint might yield a fresh approach to an essen-
tially continuous question. This symbiotic relationship between the different branches
of mathematics should inspire students (and their teachers) not to overly specialize. As
in life, it’s better to keep one’s mind as open as possible.
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Summary To students just beginning their study of mathematics, the discipline appears to come in two distinct
flavours: continuous and discrete. This article attempts to bridge the apparent divide by describing a surprising
connection between these ostensible opposites. Various inhabitants from both worlds make appearances: rook
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polynomials, Euler’s gamma function, derangements, and the Gaussian density. Uncloaking combinatorial proof
of an integral identity serves as a thread tying these notions together.
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school, while playing with a calculator, he noticed that 1.0000001 raised to the ten millionth power is awfully
close to the mysterious number e and the following year learned that this theorem is already taken. Three decades
down the road, he still thinks about e occasionally, as exemplified by his contribution here.

Letter to the Editor

The sequence discussed in G. Minton’s Note, “Three approaches to a sequence prob-
lem,” in the February issue [4] is known as Perrin’s sequence and has a long history.
(Perrin’s sequence is defined by x1 = 0, x2 = 2, x3 = 3, and xn = xn−2 + xn−3 for
n ≥ 4.) An important question is: Is an integer prime if and only if it satisfies the Perrin
condition, n divides xn? This question was raised by R. Perrin in 1899. A counterexam-
ple, now known as a Perrin pseudoprime, was not discovered until 1982: the smallest
one is 271441. This is quite remarkable compared to, say, Fermat pseudoprimes with
base 2, for which 341 is the smallest example. Recent work by J. Grantham [3] shows
that there are infinitely many Perrin pseudoprimes. One can run the Perrin recurrence
backward and verify that if p is prime then x−p is divisible by p. When the Perrin
condition is enhanced by this additional condition, then the first composite that satis-
fies both congruences, called a symmetric Perrin pseudoprime, is 27664033. For more
information, see the references listed below.

STAN WAGON

Macalester College, St. Paul, MN 55105
wagon@macalester.edu
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