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“The Duke of Brunswick has discovered more in his country than a planet: a
super-terrestrial spirit in a human body.”

These words, attributed to Laplace in 1801, refer to the accomplishment of Carl
Friedrich Gauss in computing the orbit of the newly discovered planetoid Ceres
Ferdinandea from extremely limited data. Indeed, although Gauss had already achieved
some fame among mathematicians, it was his work on the Ceres orbit that “made
Gauss a European celebrity—this a consequence of the popular appeal which
astronomy has always enjoyed...” [2]. The story of Gauss’s work on this problem is a
good one and is often told in biographical sketches of Gauss (e.g., [2], [3], [6]), but the
mathematical details of how he solved the problem are invariably omitted from such
historical works. We are left to wonder, how did he do it? Just how did Gauss
compute the orbit of Ceres? This is the question that we shall answer in this paper!

As the reader will observe, Gauss’s work offers a rare instance of solving an
historically great problem in applied mathematics using only the most modest mathe-
matical tools. It is a complicated problem, involving over 80 variables in three
different coordinate systems, yet the tools that Gauss uses are largely high school
algebra and trigonometry! Gauss achieves greatness in this work not through deep,
abstract mathematical thinking, but rather through an incredible vision of how the
various quantities in the problem are related, a vision that guides him through
extraordinary computations that others would likely abandon as futile.

Thus the description of Gauss’s work that follows involves much algebraic and
trigonometric computation. We hope the reader can appreciate Gauss’s genius by
observing how difficult it is to see how the various computational steps he undertakes
might reasonably lead to the final goal. We hope also to have provided enough details
so that the interested reader can follow Gauss’s work from start to finish.

We begin with a brief introduction to reacquaint the reader with the historical
background of the Ceres orbit problem.

Historical background

The asteroid Ceres was first observed by the Italian astronomer Joseph Piazzi in
Palermo on New Year’s Day, 1801. Within the European scientific community at the
time there had been considerable discussion of the possibility that a major planet
remained to be discovered on an orbit lying between those of Mars and Jupiter.
Indeed, a group of 24 astronomers including Piazzi had formed to make a systematic
search for such a planet, led by Baron Xavier von Zach, director of the Seeburg
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observatory and editor of the astronomical journal Monatliche Correspondenz zur
Beforderung der Erd- und Himmelskunde.

Piazzi observed Ceres until February 11, 1801, when its position in the sky became
too near that of the sun for any further observation. Meanwhile, on January 24, Piazzi
had sent letters reporting his discovery to his colleagues Bode in Berlin, Oriani in
Milan, and Lalande in Paris. In these letters, which reached Lalande in February but
took until April to reach the others, Piazzi variously referred to the new object as a
comet and as a planet [3], [7].

Reports of Piazzi’s discovery soon reached von Zach, who published in the June
1801 issue of the Monatliche Correspondenz a long article “on a long supposed, now
probably discovered, new major planet of our solar system between Mars and
Jupiter.” Though Piazzi requested that the publication of his observations be delayed,
they were quickly shared among the leading European astronomers of the day; thus
the July issue of the Monatliche Correspondenz contains a preliminary orbit for Ceres
computed by the astronomer Burckhardt. In the September issue, von Zach finally
published Piazzi’s complete observations, and in the October issue, he reported that
astronomers had looked carefully during August and September for the re-emergence
of Ceres, but without success [3].

It is at this point that Gauss became involved in the problem. At 24 years of age,
Gauss had recently completed his doctoral degree and was living in relative obscurity
. in Brunswick, supported by an annual stipend from the Duke of Brunswick-Wolfen-
buttel. Regarding the problem of computing planetary orbits from a short sequence of
observations, Gauss writes in the preface to [5],

Some ideas occurred to me in the month of September of the year
1801, ... which seemed to point to the solution of the great problem of
[computing planetary orbits] . .. [Tlhese conceptions. . . happily occurred at
the most propitious moment for their preservation and encouragement
that could have been selected. For just about this time the report of the
new planet, discovered on the first day of January of that year with the
telescope at Palermo, was the subject of universal conversation; and soon
afterwards the observations made by that distinguished astronomer Piazzi
from the above date to the eleventh of February were published. Nowhere
in the annals of astronomy do we meet with so great an opportunity, and a
greater one could hardly be imagined, for showing most strikingly, the
value of this problem, than in this crisis and urgent necessity, when all
hope of discovering in the heavens this planetary atom, among innumer-
able small stars after the lapse of nearly a year, rested solely upon a
sufficiently approximate knowledge of its orbit to be based upon these very
few observations. Could I ever have found a more seasonable opportunity
to test the practical value of my conceptions, than now in employing them
for the determination of the orbit of the planet Ceres, which during these
forty-one days had described a geocentric arc of only three degrees, and
after the lapse of a year must be looked for in a region of the heavens very
remote from that in which it was last seen? This first application of the
method was made in the month of October, 1801, and the first clear night,
when the planet was sought for as directed by the numbers deduced from
it, restored the fugitive to observation.

Gauss’s earliest extant notes on Ceres were recorded in November of 1801, and it
was in that month that he completed his first orbit determination. In the December
1801 issue of the Monatliche Correspondenz, von Zach published Gauss’s predicted
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orbit for Ceres, writing that “Great hope for help and facilitation is accorded us by the
recently shared investigation and calculation of Dr. Gauss in Brunswick” [11].
Although he pointed out that Gauss’s orbit was significantly different from those of
Burckhardt and other well known astronomers, von Zach gave arguments in its favor,
concluding that “All this proves the Gaussian ellipse. What confidence it must thus
awaken if astronomers recognize the precision with which it represents the collected
Piazzi observations.” Precision indeed, for on December 7, 1801, von Zach was able to
relocate Ceres according to Gauss’s predictions, and a few weeks later on New Year's
Eve, the rediscovery was confirmed by Wilhelm Olbers, an amateur astronomer who
later became a close friend of Gauss. And almost immediately, Gauss’s reputation as a
young genius was established throughout Europe.

Just how did Gauss compute the orbit of Ceres? Though his Theoria motus
corporum coelestium in sectionibus conicis solem ambientium (Theory of the motion of
the heavenly bodies moving about the sun in conic sections) of 1809 is clearly his
crowning achievement in the area of planetary motion, Gauss writes in his preface to
that work that “scarcely any trace of resemblance remains between the method in
which the orbit of Ceres was first computed, and the form given in this work.”
Dunnington [3], in his monumental biography of Gauss, writes that “His earliest notes
on Ceres...lack clearness,” and in [8] we find that “there is some controversy
regarding precisely how he did it.” Fortunately, Gauss sent a manuscript summarizing
his methods in a letter to Olbers dated August 6, 1802, just seven months after the
rediscovery of Ceres. The manuscript, entitled Summarische Ubersicht der zur
Bestimmung der Bahnen der beiden neuen Hauptplaneten angewandten Methoden
(Summary Survey of the Methods Applied in the Determination of the Orbits of Both
New Planets) was published years later in the September, 1809 issue of the Monatliche
Correspondenz. Though the Summarische Ubersicht had apparently already under-
gone certain refinements compared to the earliest methods, it is by far the most
complete record of Gauss’s early work on the computation of planetary orbits, and is
therefore the work upon which we base our answer to the question of how Gauss
computed the orbit of Ceres.

We close this portion of the narrative by recommending that the interested reader
consult [3] for a more complete historical account of the discovery of Ceres, and
[7] for a comparison of Gauss’s earliest (unpublished) methods to those of the
Summarische Ubersicht and Theoria Motus.

The fundamentals of planetary orbits

To understand Gauss’s work, we must first introduce the basic terminology of
planetary orbits. According to Kepler's First Law the planet’s orbit is an ellipse with
the sun at one focus. As illustrated in Fig. 1, it is convenient to choose a standard
rectangular coordinate system with the sun at the origin. (Typically the xy-plane is
chosen to be the plane of the Earth’s orbit, the so called ecliptic plane.) The angle i
between the positive z-axis and the vector n normal to the planet’s orbital plane is
called the inclination of the orbit, with 0° <i < 90°. The planet’s orbital plane and
the ecliptic plane intersect in the line of nodes, and, assuming that the direction of
motion is as indicated by the arrow, the point N on this line is known as the
ascending node. The angle () measured from the positive x-axis counterclockwise to
the line of nodes is the longitude of the ascending node. Letting w represent the
angle between the line of nodes and the major axis of the planet’s elliptical orbit, we
define the longitude of aphelion m=Q+ w+180° (the sum of angles in two
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FIGURE 1
Parameters describing the planetary orbit

different planes!), which determines the orientation of the ellipse within the orbital
plane. Note that aphelion is the point on the orbit furthest from the sun, whereas
perihelion is the point closest to the sun. The ellipse itself is determined by a, the
length of its semimajor axis, and e, its eccentricity. Finally, the position of the planet
on this elliptical orbit is determined by 7,, the time of perihelion passage. Collectively,
the six quantities i, ), 7, a, e, and T, are referred to as the elements of the orbit. For
future reference, we note that the angle 6 in Fig. 1 is known as the true anomaly, and
define v=1+ w+ 6, again a sum of angles in two different planes. (The word
anomaly was apparently chosen because of the discrepancy between the actual and
computed values of 6 in early studies of planetary motion.)

Suppose now that we know two heliocentric (sun-centered) vectors r and r”
describing the planet’s position at times 7 and 7”. It is straightforward to compute
from the normal vector n = r X r” the inclination 4, the equations of the orbital plane
and the line of nodes, and (2, the longitude of the ascending node.

Within the orbital plane, the elliptical orbit is given by the polar equation

k k

" T+ecosd 1—ccos(v—m)’

r

where k =a(l —¢?). (Consistent with our previous notation, we use 6 and 6” to
denote the true anomalies at times 7 and 7", respectively; similarly for v and v".)
With this notation, we note that the area of the ellipse is ma*Vk or maV1 —e?,
letting the context distinguish between our two uses of the symbol .

According to Kepler’s Second Law, the vector from the sun to a planet sweeps out
area at a constant rate. If & denotes the area of the elliptical sector determined by the
two vectors r and r”, At denotes the elapsed time between observations, and ¢
denotes the period of the planet’s orbit, Kepler's Second Law gives us

@ mavk
Ar ™t

If we denote the period and semimajor axis for the Earth’s orbit by T and A,
2 P

respectively, Kepler’s Third Law tells us that L L Using T = 365.25 (days) and
P y, Kep 2 A g !
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A =1 (astronomical unit), and approximating & from r and r” with the trapezoidal

rule applied to a polar area integral, k can be determined.

cosf”  cos(6+0"—6)

The value of the ratio = can be obtained from the ellipse
cos 6 cos 6

equations
k k
ecos@=7——1 and ecosf' ==+ —1,
lbell [l

and the angle 6” — 6 can be found from r-r” = |lr|| [r"llcos(8” — 6). Together, these
can be solved for 6 using the cosine addition formula. Next, @ can be obtained from
r-{cos),sin), 0) =|lr|lcos(6 + w).

Once 6 and w are known, 77, ¢ and a can easily be determined from the preceding
relationships.

The elements i and € determine the orbital plane, and 7, @, and e determine the
shape and orientation of the elliptical orbit within that plane. Thus the geometry of
the orbit in space is completely determined, but we still do not know where on the
orbit the planet is located at a particular time. For this we need an initial condition,
namely T, the time (i.e., date and hour) of perihelion passage. To determine T,, We
introduce yet another term from astronomy: in Fig. 2, a circle of radius a is

planet

perihelion

FIGURE 2
The true anomaly 6 and eccentric anomaly E

circumscribed around the elliptical orbit with semimajor axis of length a, with the
centers of the two coinciding. As noted above, 6 is the true anomaly, whereas the
angle E is known as the eccentric anomaly. These are related by

9\ _ ( l+e\s, (E
tan 5=\ 1T=% tan 5 |
which one derives by applying the half angle formula for tangent to angles E and 6 in
Fig. 2. The eccentric anomaly E can in turn be used to compute 7, via Kepler’s

2
equation E — e sin E = ==(7 — 7,). This latter equation is an immediate consequence
of Kepler’s second law: in Fig. 2, the area S of the elliptical sector is related to T, by

S ma’Vl=¢?

TT, t

Substituting the computed area S = $a®>V1 —¢*(E — esin E) (found by integration),
one obtains Kepler’s equation.
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The interested reader will find more details on the preceding computations in any
orbital mechanics text such as [8] or [9]. For a concise, elementary treatment of
computing the orbital elements from r and r”, including derivations of all of the
preceding formulas as well as computational examples of their use, see [10].

Gauss’s method in computing the orbit of Ceres

The computation of the orbital elements as described above was well known in 1801.
The problem, of course, is that through telescopic observations alone we cannot
determine the vectors r and r”; instead, we are only able to determine the geocentric
(Earth-centered) longitude and latitude of the planet, and no information whatsoever
about distance. Thus, the problem that confronted Gauss in 1801 was the following:
from three geocentric observations (longitude and latitude) of a planet, determine two
heliocentric vectors approximating the planet’s position at two different times. From
these two heliocentric vectors, the six orbital elements for the planet can be deter-
mined as previously outlined. We now describe the method that Gauss used in the
Summarische Ubersicht to solve this problem.

We begin by introducing two coordinate systems as shown in Fig. 3. The following
notation is that of the Summarische Ubersicht, with some exceptions which will be

z-axis

!

—p y-asis

"¢ Planet

FIGURE 3
The xyz (heliocentric) and én¢ (geocentric) coordinate systems

noted as they occur. Uppercase letters will consistently refer to the Earth, and
lowercase letters to the planet. In the heliocentric coordinate system, the positions of
the Earth and the planet at time 7 are (X,Y,Z) and (x, y, z), respectively. The
planet’s geocentric coordinates are (£,7,¢), and the two coordinate systems are
related by é=x—X, n=y—Y, and {=z—Z. Alternatively, one can describe
the Earth’s position using the heliocentric longitude L, latitude B, and distance R;
similarly the planet’s position is described by the geocentric longitude A, latitude B,
and distance p= 8secB. (It is the values of A and B that one determines by
telescopic observation.) By adding a single prime (X', x’, L, X, etc.) or double prime
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(X", x", L', X', etc.), these symbols represent the corresponding quantities at times 7'
and 7".

To complete the notation, we let f denote the area of the triangle formed by the
sun, the planet at time 7', and the planet at time 7", and let g denote the area of the
corresponding sector of the elliptical orbit. Similarly, —f" and —g’ denote the areas
of the triangle and sector corresponding to times 7 and 7", and f” and g” denote the
areas corresponding to times 7 and 7'. Finally F, —F', F', G, —G’, and G" are
analogously defined for the Earth.

Though Gauss did not have modern matrix notation at his disposal, it will be
convenient for us to set

x x o« f
¢ — y y/ yl/ and f — fl
Z zl zl/ f/l

Since the columns r, r’, and r” of ¢ all lie in the orbital plane, there are constants ¢,

and ¢, such that r=c;r' +c,r". Then r X r' =¢,(r" Xr') and r Xr" = ¢,(r' X 1"),

with ¢, >0 and ¢, <0. (These cross products are all perpendicular to the orbital

plane with r” X1’ directed opposite the others.) Using [’ X r"[|=2f, [r X r"[|=

—2f', and [rXr'||=2f", we have f"= —c,f and —f'=c¢,f, so that r=
! "

- f7r’ — fTr”. Therefore fr +f'r' +f"r" = 0, or equivalently, ¢f = 0. Analogously,

for

X X X F
=Y Y Y"| and F=|F'],
Z Z/ Z/I FI/
we have ®F = 0, from which it follows that
(F+F")($= D)= B((f+")F = (F+F")f). ()

Next, we transform equation (*) by introducing spherical coordinates. Referring
again to Fig. 3, define 7= {cosA,sinA, tanB). (Here Gauss presents a severe
handicap to the reader: he defines 7 in his carefully laid out list of symbols just as we
previously defined it, i.e., as the longitude of aphelion, but his first use of 7 is as we
are using it here. Let the context distinguish among the various uses in the remainder
of this paper!) Then

& x—X
dm=|n|=|y—Y]|,
I4 z—7Z

which is the first column of ¢ — ®. Similarly, the second and third columns are 87’
and 8"7", respectively. In the same fashion, let P = {cosL,sinL,tanB), so that the
columns of ® are DP, D'P', and D"P". If equation (*) is left-multiplied by the 4 X 3
matrix whose rows are 8"w” X 8w, D'P'Xdw, D'P'X8w', and D'P’' X &"w"
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(a straightforward but tedious task!), the resulting set of four equations is
(F+F")f§'[ma'n"] = (Ff' = F'f)(D[wPx"] — D'[wP'w"])
+((f+f")F —(F+F")f)D'[nPn"] (1)
(F+F")(f8'[na'P'] + 8" [wa"P']) = (Ef" — F'f)( D[wPP'] — D'[7P"P'])
(2)
(F+ F”)(fB[W’WP’] +f"3"[77’7T"P’]) =(Ef" - F"f)( D[W'PP’] - D”[W’P”P’])
(3)
(F+ F")(fB[W"WP’] +f’5’[7T"7T’P’]) = (Ff" - F"f)(D[W”PP’] - D"[7T"P”P']).
(4)

Here Gauss’s original notation [ab¢] denotes the determinant of the matrix whose
columns are a, b, and ¢; equivalently, it is the triple scalar product (a X b)-c.
Common factors of 88", 8D, 8'D’, and 6"D’ have been divided out of equations
(1)—(4), respectively.

Some comments are appropriate here. Equations (1)-(4) appear above precisely as
in the Summarische Ubersicht. Gauss does not use equation (3) in the remaining
development. His derivation of these equations involves no matrices, and although he
uses the determinants [77'7m" ] etc., it is interesting to note that much of the modern
theory of determinants was developed after Gauss’s paper appeared [1]. Gauss makes
up for the cumbersome notation available to him by simply presenting the main
results with little or no clue as to the computations behind them.

Next, Gauss writes, “we now want to examine these four equations, which are
precisely true, more closely in order to build the first approximation on them.” To this
end, he argues that in equations (2) and (4), the left side is @(t3), whereas the right
side is @(¢°) (or in Gauss’s words, “If we view the intervening times as infinitely small
quantities of the first order, ... what stands on the right of the second, third, and
fourth equations above is of fifth order...”). Thus, by setting the right side equal to
zero, “one can, as the first approximation, set

from2)  f§[ma'P' = —f'8"[wn"P']
from4)  f8[mw"P'|= —f§'[w'w"P'].”
Solving these equations for & and 8", and using Kepler’s second law in the form

//g 7T = —g’ = /g 5

-7 -7 -7

n

Gauss obtains

-8/
3 f g/ T” — T’ 7T7T”P/] 3 (5)

and

" _ g fm-n [7wm'P'] .,
8 fr/ g/ TI_ T ['7T'7T”P’] . (6)

£ 1wl

The ratios =, e and o all be approximated by one, as Gauss apparently did in

his earliest work (see [4], p. 156 and [7], pp. 16—17). All other right side quantities are
known except 8'. Thus, if 8’ can be found, we will have two complete geocentric
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positions {8cos A, 8sinA, StanB) and (8”cosX’, §”sin A", 6"tanB" ), from which two
heliocentric positions r and r” can easily be obtained.

Next, Gauss develops the main result of his paper from (1). Letting r, r', and "
represent the lengths of the planet’s heliocentric position vectors r, r’, and r”, the
polar equation of the elliptical orbit gives us

;I;—-

k(l—eCOS(v—W)) %= %(1_6003(')’—77)), and

% = %(l—ecos(v”— m)).

After multiplying these equations by sin(v” —v'), sin(v—v"), and sin(v' —v),
respectively, then adding, the result can be rewritten using the triangle area formulas

f=3r'r"sin(t) =), f' = rr sm(v - 1)’ ), and J srr'sin(v’ — v) and the identity
L

. The terms of the form e cosy sinis

siny + singy — sin(y + ¢) = 4siny 5 sing in-Y

add to zero, producing
f+f +f" _ —2r sing(v' —V)sing (v —v) )
I k cos3 (V' —v) '

Next, using the fact that the planet’s elliptical orbit has area ma*Vk, Kepler’s
second law gives us

from which Kepler’s third law gives

A% wld’k gg"
T € G

(8)

If M, M', and M" describe the Earth’s angular displacement from perihelion at times
7, 7', and 7" under the assumption of constant angular velocity, then

o M'-M _M'-M

I

T -7 =7

and so we obtain from (8)

_ T?gg" 4gg”
k w2 A3 (7" — 1) (7 — 1) AS(M”—M’)(M’—M) ' ©)

(M is actually defined by M = -2%(7 — 7,) and is called the mean anomaly.) Equation
(9) and the small-angle approximations

cosé(v”—v)zl, gzr’r”siné(v”—v’), g”zrr’siné(u’—v), and " =¢'?

allow us to transform (7) into the approximation

LLAL - - A (- ay(wr - ), (10
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Analogously, one obtains the approximation

F+F+F A
F’ - 9R®

(M'—M)(M" = M"). (11)

To complete the method, Gauss now turns to equation (1), arguing that the left side
is @(¢°), while the two terms on the right side are #(¢") and @(¢°), respectively. The
first term on the right side of (1) is dropped, and (10) and (11) are used to transform
(1) into

1

(F+F")f&[ma'n"] =f'F’é;(M' ~M)(M" - M’)(EE

- ;%)D'[wp'w”].

F/
Using an approximation which is effectively T~ 1 Gauss rewrites this equa-

tion as

[ma'a"] 2 1 1\D
[ 3 ! " ! = ‘~3_—3— U (12)
[7P'm"] AS(M' —M)(M"—M') rR® %) 9
which he describes as “the most important part of the entire method and its first
foundation.” Finally, by taking the xy-plane to be the ecliptic plane (so that D' = R'),
approximating A by R’, and computing the given determinants, (12) becomes

(= (5))3 = =t

% tan B'sin( A" — A) — tanBsin( X" — X') — tan B"sin( X' — A)
tan Bsin( L — X”) — tanB"sin( L' — A) '

(13)

(Equation (12), as published in the Gauss Werke, differs by a minus sign and has an R
instead of a D' on the right side. Also, in the Werke, (13) differs by a minus sign and
has an A® in the denominator of the right side. These errors are corrected without
comment in [7], where equations equivalent to (12) and (13) are given.)

The right side of (13) is COH]%I/ItGd from observational data, and the left side can be

reduced to the single variable <7 by means of

R R . R’ 2 R’ . , 2
7=§(l+tanzﬁ +(§) +25rcos(XN =L)|

which is obtained by applying the law of cosines to the triangle with vertices at
(0,0,0), (x', y',0), and (X',Y’,0). Solving (13) (numerically) for %, and using the
known value of R', one obtains a value for 8'; equations (5) and (6) now give values
for 8 and 6". The geocentric position vectors (8cosA, 8sinA, StanB) and
(8"cosA’, 8"sin X", §"tan B") of the planet can now be added to the Earth’s position
vectors to obtain two complete heliocentric vectors r and r” describing the planet’s
positions at times 7 and 7", as desired. With this, the problem is solved.
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What a magnificent achievement! Though the mathematical tools used are not
particularly sophisticated, all sense of the motivating geometry is lost very early in this
work, leaving one to wonder what led Gauss through the rather extraordinary
computations needed to achieve his goal. Perhaps no less than a “super-terrestrial
spirit in a human body” could have done it!
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