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If someone mentions irrational number, what do you think of? Perhaps you recall a
standard example, V2 , and a proof by contradiction that has to do with odd and even
numbers. Or perhaps what comes to mind is that the Pythagoreans were discomfitted
by the irrationality of V2 because it proved that not all geometric relationships could
be described in terms of whole numbers. In this paper we will touch on both of these
aspects of irrationality, recounting a bit of the history, and showing some variations on
the traditional approaches to these topics. Although the subject is a familiar one, it is
rich in interesting ideas. The purpose of this paper is to popularize some irrational
ideas that do not appear to be well known, including connections to eigenvalues and
dynamical systems, and to bring them together with some of the ideas that are so
familiar.

Incommensurability and Infinite Descent

The Pythagoreans encountered the idea of irrationality in geometry in the context of
commensurability. Initially, in harmony with their all is number doctrine, they
embraced the geometric position that any two segments are commensurable, meaning,
exactly measurable with a common unit. In modern terms, that would mean that
relative to an arbitrary unit of measurement, every segment has rational length. Of
course that is false, and the very notion seems quaint to our ears. But it was an
unexpected discovery to the Greeks, and had fundamental mathematical and philo-
sophical ramifications. According to one oft-repeated account, the demonstration of
the existence of incommensurable segments was so devastating that the bearer of the
bad news was put to death for his discovery.!

To understand the importance of commensurability to the Pythagoreans, one must
bear in mind their reliance on whole number relationships. In particular, the concept
of proportion was formulated in integral terms: the fundamental observation is that
a:b and na:nb are in equal proportion. Then clearly ma: mb and na:nb are also
equal. In geometry, with the quantities ma and na representing line segments, the
common divisor a becomes a common unit of measurement.

'As retold by Choike [4], the discoverer, Hippasus of Metapontum, was on a voyage at the time, and his
fellows cast him overboard. A more restrained discussion by Boyer [2, pp. 71-72] describes both the
discovery by Hippasus and his execution by drowning as mere possibilities.
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Proportionality of Similar Triangles As a concrete example of this idea, we will
derive the proportionality of the corresponding parts of similar triangles, following the
approach of Aaboe [1, pp. 42-43]. Let ABC and A'B'C’' be triangles whose
corresponding angles are equal, and suppose that BC and B'C’ are measured by the
common unit a. Then for some integers n and m, BC =ma and B'C’'=na, as
illustrated in Ficure 1.

A

B a a a a a a a C

FIGURE 1
Triangles with commensurable bases

Focusing on ABC for a moment, observe that the subdivision of BC into m equal
segments permits us also to subdivide AC into m equal segments: simply construct
parallel lines as shown in Ficure 2.

A A A
mc mb
B C B C B ma C
FIGURE 2 FIGURE 3 FIGURE 4
Subdividing AC Parallelograms ABC Tiled

The intersections of these parallel lines with AC are equally spaced along that side.
This can be seen by constructing line segments parallel to BC as in Ficure 3. Each
segment has length a, because it completes a parallelogram with base of length a
along BC. That makes the triangles lying along AC congruent, and so verifies that
their sides on AC are all of equal length, say b.

And now with two sides of the triangle subdivided, we can partition the remaining
side into m equal parts of length ¢ in two ways, using lines parallel to either AC or
BC. The result is actually a tiling of ABC by congruent triangles, with m tiles along
each side (Ficure 4). In each tile, the sides are @, b, and ¢. Thus AB =mc and
AC =mb.
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The same construction carried out in A'B’C’ results in a tiling with n copies of the
tile along each side (Ficure 5). Moreover, the tiles used in each triangle are congruent.
By construction they clearly share equal corresponding angles, as well as one side, a.
This leads to A'B' =nc and A'C’ =nb, and proves that the sides of the triangles are
in equal proportion. For example, BC : B'C' =ma:na =mb:nb =AC: A'C".

A

B C B’ c’

FIGURE 5
Tiled Triangles

If it is assumed that all pairs of segments are commensurable, this argument
establishes the proportionality of similar triangles. More generally, the presumption of
commensurability justifies treating all proportions as ratios of integers. The discovery
of incommensurable segments revealed a fundamental flaw in this approach to
proportionality, and led ultimately to the much more sophisticated formulation that
appears in Book V of Euclid.

Infinite Descent No one really knows how incommensurability was first discov-
ered. In [4], there is a retelling of the suggestion of von Fritz [9] that the pentagram
was the first geometric figure shown to have incommensurable parts. The argument
given there uses the idea of infinite descent. Starting with an initial figure, we
construct another similar figure that is demonstrably smaller in size. Two parts of the
original figure are assumed to be measurable with a common unit, and then it is
shown that this same unit must measure the corresponding parts of the smaller figure.
By repeating the construction, we can eventually reduce the figure so far that the
diameter is less than the common unit, whereupon we contradict the fact that this unit
must measure two sides of the figure. In [4] this argument is made using a pentagram.
Here we will give a somewhat simpler construction starting with an isosceles right
triangle. An essentially equivalent construction, working in a square, is presented
in [3].

Consider Ficure 6, showing an isosceles right triangle ABC. The point D has been
constructed so that BD = BC. Through D we draw a line parallel to leg AC, which
meets BC at point E. Now construct a square having CE as one side (see Ficure 7),
thus defining points F and G.

For reference, we have drawn the auxiliary lines CG and CD in Ficure 8. Observe
now that CG and GD have equal length. Indeed, with BC and BD equal (by the
construction of D), we know that angles DCB and CDB are equal. Also angles GCE
and GDB are equal (and each is half a right angle). Thus, triangle CDG is isosceles,
with CG and GD equal, as asserted. To complete the construction, add point H to
define a parallelogram ADGH (Ficure 9). Then triangles FGH and FGC are
congruent, so that CG and GH are equal. Combined with the earlier result, this
shows that all sides of parallelogram ADGH are equal to CG.
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\ D \ D
F G
c E B ¢ E B
FIGURE 6 FIGURE 7
Isosceles right triangle CEGF is a square
A A
\ D D
H
F G F G
c £ B c E B
FIGURE 8 FIGURE 9
Triangles BCD and GCD are isosceles ADGH is a parallelogram

To summarize the result of the construction, Ficure 10 shows the essential
segments, with AH, AD, HG, and GC all equal in length. Triangle CGH is an
isosceles right triangle. If a unit evenly measures BC and AB, then it must also
measure their difference, AD. The unit therefore measures legs HG and CG of
CGH. Furthermore, since the unit measures both AC and AH, it measures their
difference, CH, the hypotenuse of CGH. Therefore, any unit that measures the parts

A
D

H
G

C B
FIGURE 10

A unit measuring AB and BC also measures CG and CH
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of triangle ABC must also measure the parts of the smaller similar triangle CGH.
This completes the construction. The incommensurability of AB and BC now follows
as discussed earlier.

The incommensurability argument also leads to an algebraic demonstration of the
irrationality of V2. Assume that there is a unit that divides evenly into the leg and the
hypotenuse of the original triangle, say with n units along AB and m on BC. Then
AD must be measured by n — m units, as must AH, GH, and GC. Furthermore, HC
is then measured by m — (n —m) = 2m — n units. Since CHG and ABC are similar
triangles, we conclude that n/m =(2m —n)/(n —m). This same conclusion can be
reached using algebra. Suppose that a and b satisfy a® = 2b*. Then a® — ab = 2b* —
ab hence a(a —b)=b(2b —a). This leads to our earlier conclusion: a/b =
(2b —a)/(a — b). Now since b < a, we see that 2b —a < a. Since a <2b, a —b <b.
That is, the numerator and denominator of (2b —a)/(a — b) are each less than the
corresponding parts of a/b. The conclusion is summarized as follows: Any ratio a /b
representing V2 leads to another ratio with strictly smaller numerator and denomina-
tor. If @ and b are integers, so are 2b —a and a — b. Thus, given any integer ratio for
V2 we obtain an equal ratio of strictly smaller integers. This is clearly an impossible
situation, so \/2_ must have no such representation.

The preceding argument appears in [10, pp. 39-41]. It is essentially the same as
one used by Fermat to argue the irrationality of V3 (see [2, pp. 353-354]). Fermat
went on to make great use of the notion of infinite descent in number theory. In
contrast, our discourse now heads in a different direction—to the use of matrices.

A Dynamical View of Irrationality

One facet that both the algebraic and geometric infinite descent arguments share is
the propagation of pairs (a,b). Indeed, the generation of each new pair from its
predecessor is of a linear nature. It is natural therefore to represent it as a matrix

—1 9 .
1 - 1], and represent the pair (a, b) as a column

I (3 by

describes the propagation used in our earlier arguments. Now we make two observa-
tions about A. First, as an integer matrix, it preserves lattice points. That is, if v is a
vector with integer components, then so is Av. Second, the line L described by
a=12b is an eigenspace, so its points are also preserved by A. Actually we can say
more: A is a contraction on L. Simply observe that

=1 2|V | |2-v2 | [V2(V2-1)| o V2
TR ey

Since the eigenvalue V2 — 1 is between 0 and 1, the effect of A on points of L is to
reduce their magnitude.

The infinite descent argument can now be stated in dynamical terms. Starting with
any first quadrant point (@, b) on L, repeated application of A generates a sequence
of points that remain on the line while converging to 0. If the initial point were a
lattice point, all of the successive points would be as well, leading us to the impossible
situation of an infinite sequence of distinct lattice points converging to the origin. We
conclude that there are no lattice points on L.

operation. Let A be the matrix [

vector. Then
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Dynamics of A and A™' There is a bigger dynamical picture. Although there are
no lattice points on L, there are plenty elsewhere in the plane. Repeated application
of A to each must generate a sequence of lattice points, called an orbit. Where do
these orbits lead? It is easy to show that A has another eigenvalue with magnitude
greater than 1, and a corresponding line M of eigenvectors. Each element of the
plane can be expressed as a sum of elements of L and M. Under repeated application
of A, the L component dwindles away to nothing, while the M component grows
without bound. Therefore, almost all of the points in the plane, including every one of
the lattice points, march off to infinity under the action of A. This is the dynamical
systems view of A. Its repeated application to the plane sweeps everything not on L
out to infinity along M, while the points on L all flow toward the origin. In
combination with the fact that A preserves integer lattice points, this shows that L
can contain no lattice points other than 0.

Somewhat paradoxically, although the dynamic description is given in very geomet-
ric terms, it is not easy to depict accurately on a graph. For one thing, the eigenvalue
corresponding to M is negative. As A is repeatedly applied to a vector, the M
component alternates in sign. The resulting orbit jumps back and forth, progressing in
one direction along M on the even jumps, and in the opposite direction on the odd
jumps. So “marching to infinity” is not really the right image. Rather, the points
leap-frog infinitely far along M in both directions. Looking just at the landing points
of the even leaps, the points seem to follow a flow, as illustrated qualitatively in
Ficure 11. This really shows the dynamic behavior of A% It gives some sense of the
dynamics of A, as long as you remember what is happening on the odd leaps.

FIGURE 11
Dynamics of A?

The magnitude of the negative eigenvalue presents another obstacle to forming an
accurate graphical representation of the dynamics of A. Except for points very close
to L, the M component grows so rapidly that the L component becomes completely
invisible after only one or two iterations. That is, if the scale is made large enough to
show an initial point and two iterates, relative to that scale, even the initial L
component will be hard to see. This effect is illustrated in Ficure 12, which shows a
square, and its images under A and A2. The second image is hard to distinguish from
a heavily inked line. Careful inspection reveals the effects of the negative eigenvalue,
as the labeled vertices alternate orientation around the square and its successive
images. However, with only two applications of A illustrated, there is not much of a
basis for visualizing the overall structure of the orbits. In fact, the situation is more
easily described than drawn. From just about any starting point, the orbit takes only a
step or two to get right next to M. From that point on, the orbit jumps off to infinity,
alternating between one end of M and the other.
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FIGURE 12
Applications of A to a square S

. As stated earlier, A carries each lattice point to another lattice point. As a matter of
1 2
1 1
also has integer entries. The dynamics of A™' are the reverse of those of A: all the

points off M are swept out to infinity along L, while points on M collapse into the
origin. Reasoning exactly as before, M can contain no lattice points. Therefore, under
the action of A~!, every lattice point generates a sequence that asymptoticall

approaches L. This provides a simple way to generate rational approximations to \/§y

fact, the set of lattice points is actually invariant under A, because the inverse

a

Begin with a lattice point [b] and repeatedly apply A™'. Since the resulting sequence
a
of points |, | approaches L, the ratios a, /b, converge to V2. For example, starting

Y 1 B 1 R 4
T e e O A R e}

2] (2] () (2 [

with [ é] we generate the sequence

2378 5741 13860 33461 80782

The last pair shown approximates V2 as 114243 /80782. Squaring the numerator
and denominator we find that 114243% = 13051463049 = 13051463048 + 1 = 2-
807822 + 1 so the ratio is indeed very close to V2. This same sequence of rational
approximations was presented in [10, pp. 39-41], derived by an approach closely
related to ours, but without using matrices. The sequence also appears in [8]. There, a
quite different (and very interesting) scheme is used to find rational approximations

tox/E.
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Generalizations

The foregoing matrix approach can be generalized in several ways. First we will
consider square roots of integers other than 2. Then we will look at the more general
case of rational roots of polynomials with coefficients that are either integers, or
Gaussian integers. Finally, we generalize from roots (which correspond to linear
factors) to the more general question of factorization, as described by Gauss’s Lemma.

To begin, let us see how the preceding dynamical discussion of the irrationality of V2

k n
1 =k

generalizes to v . In place of A take the matrix [ -
before. One_eigenvalue is Vn —k and the corresponding line L of eigenvectors is

and everything works as

spanned by [‘/I‘—] The other eigenvalue is —(k + Vn ) with the corresponding line M

spanned by ‘/"—1 . In order to obtain the same dynamic behavior as before, we

require the first eigenvalue to have magnitude less than 1. We can achieve this by
taking k to be the greatest integer in Vn. In the special case that n is a perfect
square, this results in an eigenvalue of 0. Then there are lattice points on the line L,
but they are all mapped by A to 0 in a single jump. In any other case, that is, if n is
not a perfect square, we see that there are no lattice points on L, and deduce that Vn
is irrational, as before. We have therefore shown that an integer is either a perfect
square or has an irrational square root.

One way to view the choice of k in the preceding is as follows: we have a matrix
with an eigenvalue that may be larger than 1. By subtracting an integer multiple of the
identity matrix, we can translate the eigenvalues to obtain a positive eigenvalue less
than 1. This idea leads to a proof of the well known, more general result that a monic
polynomial with integer coefficients has real roots that are either integers or irrational.
Before proving this result, we need two lemmas. The first allows us to treat a general
polynomial in the context of matrix algebra, while the second assures us the equivalent
of lattice points as eigenvectors.

LEMMA 1. Every monic polynomial with integer coefficients is the characteristic
polynomial of an integer matrix.

Proof: The proof is constructive. If the polynomial is p(x)=x"+c,_ x""}

+ -+ +¢, then it is the characteristic polynomial of the so-called companion matrix
(see [5], for instance).

0 1 0 0

0 0 1 0
C= .

0 0 0 1

€ TO  TC Tt T

It is easy to verify that this matrix has the desired characteristic polynomial
by expanding the determinant of (C —AI) in the first column and using in-
duction. Additional insight comes from observing that if a« is a root of p, then
[1 @ a®> - a" 'I" is an eigenvector of C with eigenvalue a. This fact is easily
verified by a direct calculation.

LEMMA 2. Let A be an integer matrix with rational eigenvalue A. Then there exists
an integer eigenvector u. '
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Proof: The matrix A — AI has determinant 0. Therefore, over the field of rationals,
it has a nontrivial null space. A nonzero vector in that null space has rational entries,
and so a suitable integer multiple will have integer entries. The result is an integer
eigenvector u for A and A.

We state the generalization of the argument concerning Vn as follows:
THEOREM 1. A real eigenvalue of an integer matrix is either an integer or irrational.

Proof: Proceed by contradiction. Let A be a rational eigenvalue of the integer
matrix A, and assume that A is not an integer. Without loss, we may assume that
0 <A <1, for if not, simply replace A with A —|AlI. (|-] is the greatest-integer
function.) The second lemma shows that there is an integer eigenvector u correspond-
ing to A. If we apply A to u repeatedly, we generate an infinite sequence of distinct
integer vectors that converges to 0. This is clearly impossible. Therefore, every
rational eigenvalue of A must actually be an integer.

Complex Roots Combined with the first lemma, Theorem 1 shows that for a monic
polynomial with integer coefficients any real roots are either integer or irrational.
What about the complex roots? To simplify the discussion of the complex case, it will
help to use the notation Z for the integers, and Z[i] for the Gaussian integers, that is,
complex numbers with real and imaginary parts in Z. Similarly, we will denote by Q
the rational numbers, and, by Q[i], the complex numbers with rational real and
imaginary parts. Now let us return to the question of complex roots. If a monic
polynomial with integer coefficients has a root in @[i], must that root actually lie in
Z[i]? The answer is yes, and the argument is essentially the same as what has gone
before. Instead of matrices with entries in Z, we consider matrices whose entries are
in Z[i]. It is easy to modify the lemmas given earlier to apply to this new situation.
First show that every monic polynomial with coefficients in Z[i] is the characteristic
polynomial of a matrix with entries in Z[i]. Then show that when such a matrix has an
eigenvalue in Q[i], it has an eigenvector with entries in Z[¢], as well. Finally, prove
that for a Gaussian integer matrix, an eigenvalue in Q[i] must actually be in Z[i]. As
before, it may be assumed without loss of generality that the eigenvalue has magni-
tude less than 1, this time translating by the nearest Gaussian integer, if necessary.
The argument concludes just as before.

Gauss’s Lemma  All the foregoing results about roots of polynomials can evidently
be formulated in terms of linear factors, instead. Thus, if a monic polynomial with
integer coefficients has a linear monic factor with a rational constant term, it is
actually an integer constant term. This is a special case of a more general result known
as Gauss’s Lemma: If f(x) is a monic polynomial with integer coefficients which
factors as g(x)h(x), where g and h are monic polynomials with rational coefficients,
then in fact g and h have integer coefficients. The proof that is usually given for this
result makes use of unique factorization. Here, using matrix methods, we can give an
alternate proof that does not explicitly depend on unique factorization.

The proof is formulated in terms of algebraic integers: complex roots of monic
polynomials with integer coefficients. Our preceding results say that an algebraic
integer in @ must be in Z, and an algebraic integer in Q[i] must be in Z[i]. The first
of these results can be applied to prove Gauss’s lemma, once we show that the
algebraic integers are closed under addition and multiplication. The idea will be to
show that the coefficients of factors g and h are algebraic integers since they are
combinations of the roots. That will make the coefficients rational algebraic integers,
and hence integers.
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In addition to its role in the earlier lemmas and results, matrix algebra also provides
a convenient means to establish that the algebraic integers are closed under addition
and multiplication. It is clear from Lemma 1 that algebraic integers can be character-
ized as eigenvalues of matrices with integer entries. To deal with sums and products of
these eigenvalues, a useful matrix operation is the tensor product, also called the
Kronecker product. Given two matrices A and B, the Kronecker product A ® B is
defined as follows: Replace each entry a;; of A with an entire block of entries, given
by the product a;;B. The resulting matrix is A ® B. There is a nice discussion of
Kronecker products in [6]. Here, we require only one identity: (A ® BXC ® D) =
AC ® BD, which is valid as long as the products AC and BD exist. The proof is a
straightforward exercise. With the identity we can prove the following lemma.

LEMMA 3. If A and p are algebraic integers, then so are A and A+ u.

Proof: Suppose that A and u are algebraic integers. Then there are integer
matrices A and B, and integer vectors v and w, such that Av=Av and Bw = pw.
Therefore (A ® B)(v ® w) =(Av) ® (Bw) = Au(v ® w). This shows that Aw is an
eigenvalue of the integer matrix A ® B, and hence, is an algebraic integer. In a similar
way, it is easy to show that A + u is an eigenvalue of the integer matrix A® I +1® B.
Therefore A + w is an algebraic integer.

Gauss’s lemma is now easily proved.

THEOREM 2. Let f be a monic polynomial with integer coefficients, and suppose
f=gh where g and h are monic polynomials with rational coefficients. Then the
coefficients of g and h are actually integers.

Proof: The roots of f, and hence those of g and h, are algebraic integers. The
coefficients of g and h are elementary symmetric functions of the roots, and so can
be constructed from the roots using addition and multiplication. This shows that the
coefficients of g and h are algebraic integers. But they were assumed to be rational.
Thus, they are in fact integers, as asserted.

Integrally Closed Domains We conclude with one further generalization, and a
question. The foregoing material can be understood in the context of integral domains
and fields of quotients (see, e.g., [7]). In our earliest results, the coefficients of the
polynomials were integers, and we showed rational roots had to be integers as well.
Observe that the rationals are the field of quotients for the integers. This same
relationship extends to the results on Gaussian integers. The quotient field for Z[i] is
Qli]. Our earlier result states that for a monic polynomial over Z[i], any root in the
quotient field of the Gaussian integers must itself be a Gaussian integer.

In both cases, polynomials are considered over an integral domain, and the field of
quotients contains no roots other than those that were already present in the integral
domain. Proceeding with this more general setting, consider an integral domain D
within its field of quotients F. Define A € F to be integral over D if it is a root of a
monic polynomial with coefficients in D, and observe that each element of D is
integral over D. If these are the only elements integral over D, then D is said to be
integrally closed. That is, an integral domain D is integrally closed if it contains all the
elements of the field of quotients which are integral over D. The earlier results
showed that the integers and the Gaussian integers are both integrally closed.
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Now the question arises: what is the most general setting for the matrix results
presented earlier? Lemmas 1 and 2 still hold if we replace the integers by an integral
domain D and the rationals by D’s field of quotients. The proofs of Theorem 1 and its
extension to the complex case are not so easy to generalize, for they depend on
analytic properties that are peculiar to the integers and the Gaussian integers. To
illustrate the difficulties, we consider two examples. Each is a quadratic extension of
the integers, that is, a domain of the form Z[vVk ] ={n + mvk |n, m € Z} where k is a
square-free integer. The field of quotients is Q[Vk ], defined analogously. It is known
that Z[Vk | is integrally closed just when k # 1 (mod 4). (See, e.g., [7])

For the first example, k = —5, and the domain ZliV5] is integrally closed. That
means that A € Q[iV5 ] is a root of a monic polynomial over Z[iV51 only if it is in
Z[iV5]. To demonstrate this, it is tempting to mimic the proof of Theorem 1. Things
go awry right at the start, where we want to assume that [A|< 1. In the original
argument, this step was justified by the observation that A was at most one unit away
from an integer. Unfortunately, that is not true for Z[iV5 ]. Picture the elements as a
lattice in the complex plane. The lattice points are separated by one unit horizontally,
but by V5 units vertically. That means they are too far apart. In particular, if
A =5+ .5iV5, the nearest elements of the integral domain are more than one unit
away. This foils our desire to find a matrix with entries in Z[iV5] and with an
eigenvalue of magnitude less than unity in the quotient field. The argument breaks
down because we are unable to produce an appropriate matrix to act as a contraction.

The second example considers k =5, and the result cited earlier says that Z[V5 ] is
not integrally closed. This is easy to see directly: the polynomial ¢*> —¢—1 has
coefficients in Z[V5 ], and roots (1 + V5 )/2in Q[V5 1 but not in Z[V5 ]. What happens
if we try to follow the proof of Theorem 1 for this example? Observe that all the
action takes place on the real line, so the elements of QIV5 ] are all within one unit of
an integer, and hence, within one unit of an element of the domain ZIV51. As in
Theorem 1, we can construct a matrix with an eigenvalue of magnitude less than 1,
and which acts as a contraction on the corresponding eigenspace. In particular, a point
of that eigenspace with all entries from Z[V5 ] must generate a sequence of such
points converging to the origin. However, for the current example, that presents no
contradiction. The elements Z[V5 ] are not discretely spaced on the real line, and in
particular, have 0 for a limit point. So for this example, the entire proof of Theorem 1
remains valid, but failing to result in a contradiction, offers no assurance that ZIV5 1is
integrally closed.

As these two examples highlight, Theorem 1 and its extension to the Gaussian
integers depend on a coincidence of special properties. In addition to the underlying
structure exposed in Lemmas 1 and 2, we require a metric on the quotient field
satisfying two conditions: (1) the elements of the integral domain cannot get arbitrarily
close to 0 (nor hence to any other domain element); and (2) the elements of the
domain must get within one unit of every element of the field. In other words, the
proof demands that the integral domain elements are neither too close together nor
too far apart. This combination of properties does occur for Z and Z[i]. We don’t
know if there are any other domains for which the same argument can be made to
work, and so we leave it as an open question: Other than Z and Z[i], are there integral
domains for which the field of quotients satisfies the two conditions above? Clearly,
any such domain will have to be integrally closed. That observation prompts another
question: Given an integral domain D, under what conditions is there a metric on the
field of quotients satisfying the two conditions above?
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Conclusion

This paper has considered several aspects of irrationality. Starting with the earliest
history, we reviewed the formulation of irrationality in the context of incommen-
surable segments in geometry. A geometric argument based on infinite descent was
reformulated in the now familiar setting of dynamical systems, using matrix algebra for
the descent mechanism. In that context, we saw natural extensions from the ring of
integers to other structures of modern algebra. In the initial situation, we considered
monic polynomials with integer coefficients, and saw that irrational numbers emerge
as roots lying outside of Z. The more general setting concerns the monic polynomials
over an integral domain D and the nature of roots that are outside of D. The cited
result in this area, namely that Z[Vk ] is integrally closed for square-free k so long as k
is not congruent to 1 mod 4, suggests an algebraic subtlety that is absent from the
simple dynamic arguments of Theorem 1. Perhaps it should not surprise us that these

arguments proved ineffective for ZIV51 and Z[iV5 ]. Tt remains to be seen whether
the dynamic approach can be successfully applied in the more general setting.
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