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Consider a combination lock with n buttons, numbered 1 through n. A valid
combination consists of a sequence of button-pushes, in which each button is pushed
exactly once. If the buttons must be pushed one at a time, then clearly there will be n!
possible combinations. But what if we are allowed to push buttons simultaneously?

We can represent a valid combination for such a lock as a sequence of disjoint,
nonempty subsets of the set B={1,2,...,n} whose union is B. Each set in the
sequence specifies a collection of buttons to be pushed simultaneously. For example,
if n =3 then we have the following possible combinations:

({1}, {2}, (3)). ({1} {3}.{2}). ({2}, {1} {3}). ({2} {8} {1}),
({31, {1}, {2}, ({3}, {2}. {1}). ({12}, {3}). ({1.3}.{2}) . ({2,3}.{1}),
((1}.{2,3}), ({2}, {1.3}). ({3}, {1.2}), ({1,2,3}).

In this paper we will study formulas for the number of valid combinations for such a
lock.

One of the most captivating features of this problem is that it may be solved by a
number of elementary methods. In particular, we will use recurrence relations and
generating functions to derive a variety of solutions ranging from the values of certain
derivatives, to an infinite series, to some double summations with natural combinato-
rial interpretations. To obtain an asymptotic formula, we will use a basic integral
estimate for our infinite series solution. It was more than a coincidence that, while we
were developing these results, both of us were teaching second-semester calculus.
Indeed we have endeavored to keep our calculus students in mind as we were writing.

A second striking feature of the lock combination problem is that it leads naturally
to some well-known integer sequences. The reason we have included “Permutations”
in the title is revealed by the appearance in Section 2 of the Eulerian numbers, which
count the cardinalities in a natural partitioning of the set of permutations of n objects.
We will also observe a connection between our lock problem and the Stirling numbers
of the second kind.

We note that a number of authors have studied similar problems (Cayley [3], Good
[7], and Gross [8)]), though it appears that only Borenius, Danielson, and Jansson [1]
have observed the connection with the Eulerian numbers. While most of our formulas
can be found in these sources, we hope that readers will share our delight in collecting
them and providing them with elementary derivations. We would like to thank Stan
Wagon for sparking our interest in this problem and informing us of a commercially
available door lock of this type with five buttons.
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1. Two Solutions and an Asymptotic Formula

Let a, be the number of combinations for a lock with n buttons. If n =0 then the
only valid combination is the empty sequence, so a, = 1. For n > 0, a valid combina-
tion will consist of a collection of k buttons that are pushed simultaneously, for some
1 <k <n, followed by a combination using the remaining n — k buttons. Thus we are
led to the following recurrence relation for a,:

a,=1, a,= (rll)a“_l + (g)an_z + e +(Z)ao for n> 0.

Using this recurrence, we can compute the following values of a,, for n < 10:

n?

n |O 1 2 3 4 5 6 7 8 9 10
a, | 1 1 3 13 75 541 4683 47293 545835 7087261 102247563

Note that the list of combinations above for the case n = 3 confirms the value a; = 13
in this table.

Filling in the formula for the binomial coefficients in the recurrence above, we find
a common factor of n!:

a,=n! + o+

( an_1 An—9 a9 )
+ —1o7 |-
" 1(n=1)!  2!(n-2)! n!0!

This suggests defining b, =a,/n!. Dividing the formula above by n! yields the

following recurrence relation for b,:

bn—Z

by=1,  b,=b, ,+=%

b
+"°+—(; for n > 0.
nl

This recurrence relation is slightly simpler than the one for a,,, which suggests that we
might be able to find a formula for @, by first solving the recurrence for b,. We begin
with some simple bounds on b,.

THEOREM 1. For all n,

1 1
- <b, < -
2(In2) (In2)

Proof. We proceed by induction on n. The inequalities in the theorem clearly hold
when n = 0. Now suppose n > 0, and assume that the inequalities hold for all n’ <n.
Then

b,_ b
bn=bn—l+ 2‘2 + o ;l—(‘)
1 1 1
= n—1 n—2 +_|
(In2) 21(In2) n:
2 n
-1 (ln2+ (In%) 4ot (ln%)
(In2) 2! n!
1 Ing 1
< n t-1) = 1 ot
2 Y "y

This gives the desired upper bound on b,. For the lower bound, we begin by
applying the induction hypothesis to all terms in the formula for b, except the last:
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b +...+__b_1_.__+h
o (n—1)!

1 1 1 1
> + +o =t 7
2(ln2)"""  2l-2(ln2)" (n—1)!2In2 "~ n!

R (In2)® , (n 2)"! L An2)"
 9(In2)" S Y e I

By Taylor’s Theorem, there is a number ¢ such that 0 <¢ <In2 and
(In2)"™" L ¢(h2)"

b,=b,_, +

=14+1In 2+( 2) + -

2! (n—1)! nl
(In2)* L (n2)" ! L 2(In2)"
<l+In2+ 31 + - (n—l)‘ nl
Thus
RS T M (In2)® s (In2)" " L 2(n2)"
" 2(1112)" 2! (n—1)! n!
( In2 _ )_ 1
2(1 2)" 2(In2)"’
as required.

A natural way to study the sequence {b,} is to define the generating function
f(x)= X bx".
n=0

Note that by Theorem 1, the sum converges absolutely for |x|<In2. Using our
recurrence relation for b,, we can solve for f(x):

||M=

f(x)= b+2br—l i iib"

—|

= i i_o; 1+ii——ib"x"=l+(ex—1)f(x),

k=1 n=0

and therefore

1
f(x)=2_e_\-, |x|<ln2

Since b, is the coefficient of x" in the Maclaurin series for f(x), we have
b, =f(0)/n!. But recall that a, =nlb,, so we have proven the following theorem:

)
R U (g

To compute values of @, using Theorem 2, we must compute derivatives of the
function 1/(2 —e¢*). One way to make this computation easier is to rewrite the
function as a geometric series:

THEOREM 2. For all n,

xr=0
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Differentiating term-by-term we find that
n *® x\k
wla=) -2 Ir(g). x<me
=0

(Note that for n = 0 we use the convention 0° = 1.) Thus, applying Theorem 2 we get
another formula for a,:

THEOREM 3. For all n,

| b
>~

3L

l\’.>|>—4

Using Theorem 3, we can improve on our estimates in Theorem 1. A natural way to
estimate the infinite sum in Theorem 3 is to use the improper integral

00 n

J, 7

We evaluate this integral by performing the substitution u =x In2 and then integrat-
ing by parts repeatedly (or recognizing the I' function):

0 1 I'(n+1) n!
= —— [ gy = - .
;3 (hlz)"“[o T )™ ()"

Thus, by Theorem 3 we expect to have
n!
T ne)
For small n, this approximation is remarkably accurate. For example, we have:
a5 = 230283190977853,
15!
2(In2)"

Unfortunately, for larger n the error of the approximation grows, but we can place
bounds on this error.

=~ 230283190977853.04.

THEOREM 4. For all n,

n! _l( n )"< < n! +l( n )"
2(ln2)"+1 2\eln2 n 2(1n2)"+1 2\eln2) -

Proof. 1t is easy to check that the function g(x)=x"/2% is increasing on the
interval [0, n/In2] and decreasing on [n/In2, %), and thus its maximum value on the
interval [0, ®) is

1 2 n n
g(n/In2) = (1;{/1112) =(el?12) '

Let j be the largest integer less than or equal to n/In2 and put r=(n/In2) —j.
Thus (n/In2) =j + r, j is a nonnegative integer, and 0 <r < 1.

We now use upper and lower rectangles to overestimate and underestimate the
integral of g(x). Upper rectangles of width 1 lead to the following overestimate of the
integral (see FIGURE 1):
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[ < ¥ =+ g 2 X <oa,+ (s
k = n
0 2 =2 eln2 koii1 eln2

Substituting in the value of the integral gives the requlred lower bound on a
To underestimate with lower rectangles we again use rectangles of width 1, except

that we split the interval from j to j + 1 into two rectangles, of width r and 1 — r (see

FIGURE 2). This gives us
[ 2de> Z —+r +(1 )(f D,

i+1)"

=24, - [(1- )] +r——(]2j+l)
n n

<2a, = eln2

>

which leads to the stated upper bound on «

e
o
o =

.
B

L

o ]

FIGURE 1
= dx with upper rectangles.

Approximating f
0

J T2
FIGURE 2

Approximating f % dx with lower rectangles.
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Better bounds on a,, can be obtained by using methods from complex analysis (see
[1], [7], and [8]). However, our bounds are good enough to prove:

COROLLARY 5.
a

lim ————— =
n=> nlf[2(n2)""']
Proof. By Theorem 4, we have
S 1‘ <b2(nse)"
n!/[2(n2)" "] n!
To complete the proof of the corollary, we show that the quantity on the right side of

this inequality approaches 0 as n approaches infinity. Recall Stirling’s formula, which
says that

lim ______L27anf‘n/e) =1.

Applying Stirling’s formula, we find that
lim an(n‘/e) — lim In2 v2mn(n/e) _ 0-1—

n—o n: n—o ‘/27711 n!

0.

2. A Connection with Permutations

So far we have been concentrating on estimates of the sum in Theorem 3, in order to
get approximations to a,. We can also evaluate the sum exactly, as follows. For n >0
let

h,(x)= kz krxk.
=0

Then by Theorem 3, a, = (1/2)h,(1/2). We now derive a formula for a, by finding
formulas for the h,(x)’s.
Clearly

- 1
ho(x)=2xk=l_x, —-1<x<1.
k=0

Also, differentiating term-by-term we see that
R(x)= Y k"*xk"1 5o xh (x)= Y k" lxk=h, (2).
k=0 k=0

Applying this recurrence repeatedly, we get the following formulas for A,(x), for
n<5:
x

ho(x) = Tz, h(x) = s

2 4x2 3
x+x . hs(x)=x+ x +4x
(1-x) (1-x)

x4+ 11x2 + 1123+ hy( %) = x +26x% + 66x3 + 26x* +x°
a-x° 7 (1-x)° '

hy(x) =

hy(x) =
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It appears that h,(x) is always a polynomial of degree n divided by (1 —x)"*!, but it
is not immediately clear what the pattern of coefficients in these polynomials is. To
study this pattem we will introduce the following notation. Let A, ; be the
coefficient of x* in the numerator of h,(x). For example, A, = 26. "Then the
recurrence for h,(x) above can be used to derive a recurrence for the A, ;’s:

THEOREM 6. Foralln>1,
Tioi Ay xt
( 1 —x ) n+l °
where the numbers A, | are given by the following recurrence relation:

A"’1=An’n=l, An+1,k=kAn‘k+(n+2_k)An,k—l fOTQSkSn

h,(x) =

Proof. We proceed by induction. The case n = 1 is easy to verify. For the induction
step, suppose the formula in the statement of the theorem is correct for h,. Then

, d[Zi A, xx*
hn+l(x)=xhn(x)=x-£(_(kl_f_—)+nk+_1—)

Q=) "I kA, R T (n+ D)(1—2)"Tp A, 2
=X (1—x)2"+2

B TioikA, ((1—x)x*+Z7_(n+1) An,kx’“rl

- (l_x)n+2

Skt S (1=K A6

- (1—x)"+2

xR (kA + (n+2-k) A, )xF !

- (l—x)n+2

+1 k

_ LiliAni kX
2
(1 _x)n+

The recurrence relation given in Theorem 6 allows us to readily compute the
coefficients A, ; for 1 <k <n, given the coefficients A,_, ; for 1 <k <n — 1. Thus
it is convenient to display these numbers in the form of a triangular table 3 la Pascal’s
triangle. The nth row of the triangle will be

Ay, Ay o AL

These rows may be computed by beginning with A, ; = 1 and generating each row
from the preceding row via the recurrence relation of Theorem 6. The first seven rows
of the triangle are shown in FIGURE 3.

1
1 1
1 4 1
1 11 11 1
1 26 66 26 1
1 57 302 302 57 1
1 120 1191 2416 1191 120 1

FIGURE 3
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Note that the first five rows agree with our computations of h,(x) above. Like
Pascal’s triangle, this triangle appears to be symmetric, which suggests that perhaps
A=A, .41 forall 1<k<n. An even more striking analogy with Pascal’s
triangle is revealed by adding the entries across the rows of our triangle. Recall that
row n of Pascal’s triangle adds up to 2", because the entries in this row count the
numbers of subsets of {1,2,..., n} of different sizes. Adding the entries across the
rows of the triangle in FIGURE 3, we find that the sums of the rows are:
1,2,6,24,120,720,5040; i.e., the factorials! This observation suggests that we look for
an interpretation of the numbers A, ;, for 1 <k <n, in terms of a partition of the set
of permutations of {1,2,..., n}.

For ease of terminology, we will use the term n-permutation to denote a permuta-
tion of {1,2, ..., n}. We think of an n-permutation as an ordered list of the numbers
1,2,...,n. Given a permutation in this form, say s, s, ...s,, we count the number of
increasing runs in the sequence sy, s,,..., s, reading from left to right. For example,
the permutation 1 4 2 5 3 6 8 7 has four increasing runs; namely, 1 4,2 5,3 6 8,
and 7. As the next proposition shows, partitioning the set of n-permutations according
to their numbers of increasing runs yields the numbers A, ;.

PROPOSITION 7. For all n and k such that 1 <k <n, the number of n-permutations
with k increasing runs is A, ;.

Proof. See [4, Theorem A, pp. 241-2] or [16, Problem 12.22(a)].

The numbers A, ;, and the interpretation given for them in Proposition 7, are well
known in combinatorics (see [4], [13], [14], [15], and [16]). They are called the
Eulerian numbers (see [5]), and so it is appropriate to refer to the triangular table of
numbers we defined above as Euler’s triangle. MacMahon [11] was apparently the
first to use Eulerian numbers to classify permutations by increasing runs. The
Eulerian numbers have appeared in a variety of contexts in combinatorics and
statistics (e.g., see [2], [9], and [10]). A very extensive description of their theory is
given by Foata and Schiitzenberg [6].

We can now confirm the conjectures we made based on the first seven rows of
Euler’s triangle.

COROLLARY 8. Forall n > 1,
n
(@ Y A,;=nland
(b) An,k=An,n+l—k for ].SkSﬂ

Proof. (a) is immediate from Proposition 7. For a proof of (b), see [4, Theorem B,
p. 242] or [16, Problem 12.22(b)].

Now we return to our original lock problem. From Theorems 3 and 6, we see that
the number of combinations for a lock with n > 1 buttons, a,, satisfies:

n

A e o

k=1

By the symmetry of Euler’s triangle stated in Corollary 8(b), we also have:

n

n
an = Z An,n+l—k 2(n+l_k)_l = Z An,kzk_lo (2)
k=1 k=1
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Equation (1) has a natural interpretation in terms of lock combinations. To see this,
first note that given a lock combination, we can generate a corresponding n-permuta-
tion by writing down the numbers of the buttons pressed, in the order in which they
are pressed, with the numbers of the buttons pressed simultaneously being written in
increasing order. For example, the lock combination ({1},{3,4},{2,5}) would corre-
spond to the permutation 1 3 4 2 5. Clearly a lock combination that consists of [
steps will lead to a permutation with at most ! increasing runs. Furthermore, if we
follow this procedure for every lock combination, each permutation with k increasing
runs will appear exactly 2" % times. To demonstrate this, let o be an n-permutation
with k increasing runs, and consider separating this permutation into blocks repre-
senting the steps in a corresponding lock combination; for example, we might do this
by inserting vertical lines in the permutation to delimit the blocks. The numbers
within each block must be in increasing order, so we must at least insert the k — 1
vertical lines needed to delimit the k increasing runs in o. There are n — 1 spaces
between the n numbers where vertical lines might go, and k — 1 of them are now
filled, so there are (n — 1) — (k — 1) =n — k places left unfilled. By choosing a subset
of these n —k positions and inserting vertical lines at the chosen positions, we
determine a lock combination corresponding to o. Hence, there are 2" % lock
combinations corresponding to a single n-permutation with k increasing runs.

For example, the permutation 1 3 4 2 5 has two increasing runs: 1 3 4 and
2 5. It corresponds to the 2°~% = 8 lock combinations:

({1.3,4},{2,5}).({1},{3,4},{2,5}), ({1,3} {4}, {2.5}) ({1}, {3} . {4}.{2.5}),
((1,3,4}.{2}.{5}). ({1}, {3.4}.{2}.{5D),
({1,3}, {4}, {2}, {5}), ({1}, {3}, {4}, {2}. {B}).

Proceeding by analogy with Pascal’s triangle and, in particular, in view of the
recurrence relation of Theorem 6, one might hope for an explicit formula giving the
numbers A, ¢ in terms of binomial coefficients. In fact, such a formula is known.

THEOREM 9. For 1 <k <n,

k-1

m T (Mg

i=0

A

Proof. See [4, Theorem C, p. 243], [16, Problem 12.22(d)], or [12, Theorem 2].

Combining equations (1) and (2) with Theorem 9, we obtain two more formulas
for a,,.

THEOREM 10. Foralln>1,

k=1 i=0

Our last solution to the combination lock problem involves another well-known
family of numbers, the Stirling numbers of the second kind. For 1 <k <n, the Stirling
number S(n, k) is the number of unordered partitions of the set {1,2,...,n} into k
nonempty subsets. Since a lock combination with k steps can be thought of as an
ordered partition of this set into k nonempty subsets, we see that the number of lock
combinations with k steps is equal to k!S(n, k). Summing over all k gives us the



252 MATHEMATICS MAGAZINE

following formula:

THEOREM 11. Forall n>1,
n
a,= Y. k!S(n,k).
k=1

Like the Eulerian numbers, the Stirling numbers of the second kind can also be
expressed in terms of binomial coefficients. In fact, there is a striking resemblance
between the formula for S(n, k) given in our next theorem and the formula for A, ;
given in Theorem 9.

THEOREM 12. Forall 1 <k <n,
1 k-1 | k n
S(n.k) =77 L (—1) (i)(k—z) .
i=0
Proof. See [4, Theorem A, pp. 204-205].

Combining Theorems 11 and 12, we obtain our last formula for a,.

THEOREM 13. Forall n>1,
n k-1 K .
B WEN IR
k=1 i=0

In conclusion, we note that we can now compute the number of valid combinations
for the commercially available five-button combination door lock mentioned in the
introduction. This lock has an extra feature; namely, it does not require that all five
buttons be used in a valid combination. For example, ({2}), ({1,5},{3}), and ({1, 2,4, 5})
are valid combinations. By viewing the subset of unused buttons as the last block in a
combination that uses every button, we see that there is a one-to-one correspondence
between the combinations that use all the buttons and those that don’t. However, this
correspondence includes the empty combination—the combination in which no
buttons are pushed—and this combination is not meaningful for a commercial door
lock. Thus, the number of meaningful combinations for the lock is 2a5 — 1 = 1081.
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A Mnemonic For e
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Mnemonic devices for the decimal expansion of 7 are well known. For example,
“May I have a large container of coffee” may be found in [1]. The principle is to
replace each word by the number of letters in it. Similar mnemonics for 7 exist in
other languages, including Russian and Greek.

On the other hand, the only mnemonics for e known to the author are those given
in [2] (in English, French, and Spanish) covering 10 places after the decimal point and
[3] containing a sentence going to 20 digits. Potential authors may have been
discouraged by early appearances of zeros in

e =2.718281828459045235360287471352662497757. . ..

The 20-place mnemonic in [3] uses the (one-letter) word “O” to represent the zero at
place 13.

In the quasi-poem below, zeros are represented by exclamations “...!” whose
canonical pronunciation is a short “ah!” (although the readers may substitute their
favorite letterless words).

<

We present a mnemonic
To memorize a constant
So exciting that Euler exclaimed: ... 1"
When first it was found,
Yes, loudly: “...!”
My students perhaps
Will compute e,
Use power of Taylor series,
An easy summation formula,
Obvious, clear, elegant!

The author thanks the referee for making the author aware of [2] and [3] and for suggesting an
improvement.
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