92 MATHEMATICS MAGAZINE

The Geometry of Harmonic Functions

TRISTAN NEEDHAM

University of San Francisco
San Francisco, CA 94117-1080

1. Introduction

Imagine a society in which the citizens are encouraged, indeed compelled up to a
certain age, to read (and sometimes write) musical scores. All quite admirable.
However, this society also has a very curious (few remember how it all started) and
disturbing law: Music must never be listened to or performed!

Though its importance is universally acknowledged, for some reason music is not
widely appreciated in this society. To be sure, professors still excitedly pore over the
great works of Bach, Wagner, and the rest, and they do their utmost to communicate
to their students the beautiful meaning of what they find there, but they still become
tongue-tied when brashly asked the question, “What's the point of all this?!”

In this parable, it was patently unfair and irrational to have a law forbidding
would-be music students from experiencing and understanding the subject directly
through “sonic intuition.” But in our society of mathematicians we have such a law. It
is not a written law, and those who flout it may yet prosper, but it says, Mathematics
must not be visualized!

More likely than not, when a mathematics student today opens a random text on a
random subject, he is confronted by abstract symbolic reasoning that is divorced from
his sensory experience of the world, despite the fact that the very phenomena he is
studying were often discovered by appealing to geometric (and perhaps physical)
intuition. This reflects the fact that steadily over the last hundred years the honor of
visual reasoning in mathematics has been besmirched. Only recently have many
mathematicians picked up the gauntlet on its behalf, openly challenging the current
dominance of purely symbolic logical reasoning.

Rather than indulge in further pulpit-thumping, we refer the sympathetic reader to
a cheering MAA book [1]. The present author has joined the fray by attempting to
render palpable the beautiful truths of elementary complex analysis by means of new
geometric insights. Both this paper and a previous one [2] arose in connection with
that work [3].

Our concern here will be with the various formulae for expressing a harmonic
function in the interior of a planar region in terms of its values on the boundary. In
place of the usual symbolic arguments, we shall supply simple geometric explana-
tions /derivations of these formulae. But before we begin to visualize these formulae
(starting in the next section) we must clarify the nature of the questions to which they
are the answers. We begin with Poisson’s formula for the disk.

Think of the complex plane as a thermally insulated sheet of metal; heat flows
freely within it, but does not leak away into the surrounding space. Now supply heat
at a constant rate to various points (sources) of the plane, and likewise remove heat at
other places (sinks). Initially, the temperature of the metal at any given point will
vary with time. A small element of the metal plate gains or gives up energy as heat
attempts to flow across it from the sources to the sinks. But eventually (quickly, if the
thermal conductivity is high) the heat flow will settle down into a steady pattern and
the temperature at a point z will likewise settle to a definite value T(z). In this
steady state, the global statement of the conservation of energy is that total heat
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supplied at the sources equals the total heat removed at the sinks (possibly including
infinity).

It is shown in elementary physics that —VT is the heat flow vector, and it then
follows that the local statement of the indestructibility of energy is that, in the steady
state, T(z) is harmonic: Away from sources and sinks, it satisfies Laplace’s equation,

2T 0T

— +—=V-(VT

ax?  ay? (V1)
= —(local rate of energy production per unit area)
=0.

Suppose that we now measure the temperature around the circumference C of a
circle of radius R, the interior of which is free of sources and sinks, and the center of
which we conveniently choose to be the origin. We hope that it may seem physically
plausible that these values actually determine the temperature at any interior point a.
This was confirmed by Poisson in 1820 when he derived an explicit formula for T(a)
in terms of T(C).

As z=Re" moves around C, we may express the measured temperature as a
function of the angle: T = T(8). Poisson’s formula is then
1 7 [RZ —lal?

T(a)=5=

5 ]T(o) do. (1)

|z —al®

The quantity in square brackets is called the Poisson kernel, and we shall write it
Z(z). Thus (1) may be roughly paraphrased as saying that the heat of an element of
C at z propagates to a with a “facility” ZZ(z) that dies away as the square of the
distance between z and a.

This formula is connected with an important and difficult issue that engaged an
illustrious cast of characters: Riemann, Weierstrass, Schwarz, Klein, Poincaré, and
Hilbert. Instead of dealing with a pre-existing harmonic function, Dirichlet’s problem
demands that we arbitrarily (but piecewise continuously) assign values to the bound-
ary of a simply connected region R and then inquire if there always exists a harmonic
function in R that takes on these values as the boundary is approached. (This problem
is in fact closely related to the equally famous Plateau’s problem: Given a simple
closed curve in space, does there exist a minimal surface that spans it?)

In the case of the disk, H. A. Schwarz demonstrated that not only does the solution
to Dirichlet’s problem exist, but it is explicitly given by (1). If we are handed the
piecewise-continuous values T(#) on C then we may construct a function T(a) in the
interior according to Poisson’s recipe. Schwarz’s solution then amounted to showing
that T'(a) is automatically harmonic, and that as a approaches a boundary point at
which T(6) is continuous, T(a) approaches the given value T(8). The truth of all this
will be explained in the next two sections.

If we assume (as was implicit in the previous discussion) that mathematical
harmonic functions are identical with physical temperature distributions, then both
the existence and uniqueness of a mathgmatical solution to Dirichlet’s problem for
general regions is assured by Nature’s solution to the equivalent physical problem:
Heat the boundary points of R to their assigned temperatures; let things settle down;
the temperature in the interior is then the desired harmonic function. In like manner,
if we assume the identity between soap films and minimal surfaces, we need only dip
a bent loop of wire into soapy water in order to solve Plateau’s problem.

A sliver of history: Riemann did make the above identification (actually, he thought
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in terms of electricity rather than heat) and thereby reaped a rich harvest of
mathematical discoveries based on physical intuition; in particular, later we shall see
how it led him to his mapping theorem. Perhaps aware of the audacity of his style of
reasoning, Riemann sought to bolster his physical intuition with a more mathematical
idea. In ignorance of its earlier use by Gauss and Lord Kelvin, he christened this idea
Dirichlet’s Principle. Roughly, it asserts that if we consider the functions T(a),
continuous in the interior of R and taking on prescribed boundary values, then, due
to the nonnegative integrand, there must be one (don’t you think?) that minimizes

IT\* (9T )?
[ (5w
But it can then be shown that this minimizing function is also the solution to
Dirichlet’s problem, the existence of which was sought by Riemann.

However, in 1869 the brilliant but dryly logical Weierstrass threw a wrench into
the works when he produced a counterexample to the general idea underlying
Dirichlet’s Principle. As Felix Klein later described the situation, “With this a large
part of Riemann’s developments came to nought.” These clouds of doubt would
continue to hang in the air for three decades. Undeterred, mathematicians such as
Klein—who did not shun Weierstrassian rigor but was himself driven by
geometric /physical intuition—continued to expound and extend Riemann’s ideas.
Only in 1900 did Hilbert finally “resurrect Dirichlet’s Principle” (to use his own
words) by showing that although Weierstrass had discredited the general idea behind
it, this particular instance actually is correct.

In fairness, it should be explained that while Weierstrass doubted Riemann’s
proofs, he believed the results. Indeed, it was at his urging that Schwarz (a former
pupil) found the above solution for the disk that did not rely on the suspect principle.
Schwarz was then able to use this to show that a solution will also exist if R is any
union of disks.

It is clear to which camp the author owes his allegiance. Although Weierstrass
would not approve, our mode of explanation will remain steadfastly geared to
geometric intuition rather than logical rigor.

2. Schwarz’s Interpretation

There is an exceedingly beautiful geometric interpretation of formula (1), due to
Schwarz, which deserves to be far better known than it is. Of the myriad complex
analysis texts, we have only found it described in the book by Ahlfors ([4], p.170).
Schwarz obtained it, and likewise Ahlfors explains it, as a consequence of Poisson’s
formula (itself derived by computation). In this section we shall instead demonstrate
Schwarz’s result directly and geometrically, only then producing the Poisson formula
as a consequence of it. First we remind the reader of some preliminary facts.

Suppose we measure the temperature at the center 0 of the circle C. If half of C
were at one temperature while the other half were at another, then symmetry and
physical intuition would suggest that at 0 we would find the average of these
temperatures. Dividing up C further into arcs of constant temperature, then passing
to the limit of infinitesimal arcs R d@ at temperatures T(6), we are led to suspect
Gauss’ mean value theorem for harmonic functions:

T(O)=§1;f

T

T(6) db. 2)
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This is often proved, as opposed to merely motivated, by appealing to Cauchy’s
Integral Formula; its consonance with the desired formula (1) is evident upon setting
a=0.

Ficure 1(a) is intended to make the meaning of (2) more vivid. Imagine that there
are thermometers placed all along the circle and that you are standing at 0. Turning
your head successively through the same small angle marked e you would see the
thermometers at the white dots on the boundary. The average of the temperatures
you see (as o ~> 0) is then the temperature where you stand.

A [b]

FIGURE 1

Next, recall that analytic mappings are essentially those that are conformal, that is,
those for which the angle of intersection of two image curves is identical, in
magnitude and sense, to that of the preimages. This makes it easy to understand that
the composition f[h(z)] of two analytic functions is itself analytic, for if two mappings
preserve angles then so will their composition.

Since the real and imaginary parts of an analytic function f(z) = T(z) +iS(z) are
automatically harmonic by virtue of the Cauchy-Riemann equations, it follows from
the above that T[h(z)] is also harmonic. But if we are given a harmonic function T(z)
in a simply connected region, then it is always possible to find a harmonic conjugate
S(z) such that f(z) = T(z) + i S(z) is analytic; in fact the level curves of S are just
the paths of the heat as it flows orthogonally across the isotherms T = constant.
Hence, if T(z) is any harmonic function and h(z) any conformal mapping, then
T(z*) is automatically harmonic, with z* = h(z).

Suppose now that h(z) maps the disk to itself. If z = Re® lies on C then so does
z* = Re'®”, and, since we suppose that we have measured the temperature all around
C, we therefore know the temperature T(6*) at z*. Having the values of T(6*), we
may now compute the integral in (2) for the harmonic function T[h(z)] to obtain

T(O*j=%f

T

T(6*) dé, (3)

in which it should be stressed that the averaging is still taking place with respect to
the angle of z, not its image z*.

We may interpret (3) as follows: To obtain the temperature at 0* we need only
take the average of the new temperature distribution on C obtained by transplanting
the temperature measured at each z to the new location z*. We are now halfway to
Schwarz’s result. To find the temperature at ¢ we must find a conformal mapping of
the disk to itself such that 0 is sent to a, then take the average of the new
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temperature distribution. The chief surprise will be how simply the new distribution
is related to the old one.

In order to find the mapping h(z), we require the basic properties of inversion that
are illustrated in Ficure 1(b). Readers familiar with inversive geometry may readily
skip to Ficure 2.

Given a circle K of radius r and center P, recall that the point A is the inverse of
A if it lies in the same direction from P as A, and PA - PA =r2. If we consider a
second point B and its inverse B then (PA/PB)=(PB/PA), and therefore the
triangles PAB and PBA are similar. Thus,

the angles PAB and PBA are equal. (4)

It follows easily [exercise] from (4) that if two curves meet at angle ¢ in E then their
images under inversion in K meet at angle —¢ in E. In other words,

inversion is anticonformal . (5)

Before proceeding, remind yourself why it is that circles map to circles; this is
again [exercise] an easy consequence of (4). Consider a disk such that its boundary
circle C cuts K at right angles. Since C is mapped to a circle and F and G remain
fixed, it follows from (5) that

C and its shaded interior are mapped onto themselves. (6)

In particular, the figure shows z being mapped to 2.

Returning to our original problem, the desired conformal mapping h(z) is now
within easy reach. See Ficure 2. Through 0 and a (at which the temperature is
sought) draw the line L. Through a, draw the line perpendicular to L, meeting C in
F and G (not shown). Letting P be the intersection of the tangents (not shown) at F
and G, draw the circle K with center P and radius PF. Since K is orthogonal to C,
(6) says the white disk is mapped to itself under inversion in K; furthermore, it is
easy to see that the points 0 and a are interchanged by the mapping. The only snag is
that, by (5), the mapping is anticonformal rather than conformal. However, if we now
reflect in L then the angle between two curves will be reversed a second time,
thereby returning it to its original state. A viable conformal mapping is therefore

h(z) = inversion in K, followed by reflection in L. @)

FIGURE 2

For readers with a smattering of hyperbolic geometry (which we will be using
shortly) there is a simpler way of looking at h. [Excellent introductions to this



VOL. 67, NO. 2, APRIL 1994 97

geometry are [5] and [6].] The intersection point m = KN L of the two orthogonal
hyperbolic lines K and L is the midpoint of the hyperbolic line segment Oa.
Inversion in K corresponds to hyperbolic reflection in K, and, just as in Euclidean
geometry, successively reflecting across two intersecting lines yields a rotation about
their intersection point through double the angle contained by the lines. Thus h is a
rotation of the hyperbolic plane through angle m about the midpoint m, making it easy
to understand why the ends of the line segment are interchanged.

The geometric key to Schwarz’s still unstated result lies in the following splendid
fact. Instead of first sending z to Z and then reflecting it to z*, we may achieve the
same thing in one fell swoop, and without needing K, by projecting z through a. To
see this, let us abuse our notation for a2 moment by defining z* to be this projected
point; we must then show that it is the reflection of Z in L.

By (4), the similarly marked angles in Ficure 2 are equal. But the angle subtended
at 0 by Z and z* must be double that subtended on the circumference at z. The
angles at 0 marked e and © must therefore be equal.

For a different approach, see [3].

We have thus bypassed all calculation and given a direct geometric demonstration
of Schwarz’s result: To find the temperature at a, transplant each temperature on C to
the point directly opposite it as seen from a, then take the average of the new
temperature distribution on C.

The example in Ficure 3 illustrates the beauty of this. In Ficure 3(a), half of C is
kept at 100 degrees with steam, while the other half is kept at 0 degrees with ice.
Being close to the cold side, we would expect a to be cool. Ficure 3(b) shows the
new temperature distribution obtained by projection through a. It is now vividly
clear how the distant hot semicircle is ‘focused” through @ onto a much smaller arc,
yielding a low average temperature on C and hence a low temperature at a itself.

FIGURE 3

While we have not found this approach to Schwarz’s result elsewhere, it would be
surprising if it had been missed. However, let us end this section by pointing out
something that initially obscured the issue for the author, and that may have also
hindered other writers. Although we have had no need of it, the formula for our
geometrically natural mapping is

R 2=4%_
h(z) =R (6z—32)'
For some reason, though, the formula that is conventionally used (e.g., [4], p. 167; [7],
p. 197) in the calculational proof of (1) is, instead,

—R? M)
k(z) =R (az+32 '
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Of course this too has the required property of mapping 0 to a, but it is not
self-inverse (as h is) and does not send a to 0.

Since the two mappings are related by k(z)=h(—2z), we see that k(z) first
projects the points of C through 0, then through a. See Ficure 4(a). Short of this
figure itself, there now appears to be no simple relationship among the points z, a,

and k(z).

3. Dirichlet’s Problem for the Disk

Our example in Ficure 3 was a trifle hasty. For the moment, Schwarz’s result merely
says how the interior values of a given harmonic function in the disk may be found
from the values of C. But in Ficure 3 we blithely assumed that we could also use it
to construct such a function in the disk, given arbitrary piecewise-continuous bound-
ary values. In other words, we assumed Schwarz’s solution of Dirichlet’s problem for
the disk (outlined in the introduction). We now justify this.

Ficure 4(b) shows a approaching a boundary point z; also shown are the images
(C¥ and C3) under projection through a of the two small arcs (C, and C,) adjacent to
z. If the given boundary values are continuous at z then T is essentially constant on
C,UC,, and so the new temperature distribution is likewise almost constant on
C} U Cj. As required, the constructed function T(a) therefore does approach T(z) as
a approaches z.

FIGURE 4

Although Dirichlet’s problem makes no demands on the behavior of T(a) as a
approaches a boundary point at which T is discontinuous, it is easy to see (though
not to calculate!) what actually happens. Suppose that the boundary temperature
jumps from T, to T, as we pass from C; to C,. If a arrives at z while traveling in a
direction making an angle Bm with C,, then [exercise] T(a) approaches [BT; +
(1 — B)T,]. This result is relevant to the representation of discontinuous functions by
Fourier series.

It now only remains to show that the constructed function is indeed harmonic. First
we shall pause to recover Poisson’s formula in its classical form. We begin by noting
that (3) may be re-expressed as

T(a) = %f:T(f)) d6*. (8)

In order to put this into the same form as (1), we now require df* in terms of d#.
Consider Ficure 5(a), which shows the movement RA6* of z* resulting from a
movement RA6 of z.
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For brevity in this and later arguments, let us employ the following shorthand. If
the ratio of X and Y tends to unity as small quantities in a geometric construction
tend to zero, we say that X and Y are “ultimately equal”, or that X =Y when the
small quantities are “infinitesimal.” For example, the chord s is ultimately equal to
the arc RAG. It follows from the basic theorems on limits that ultimate equality
inherits many of the properties of ordinary equality.

Returning to Ficure 5(a) the arcs RA6* and RAO are ultimately equal to the
chords ¢ and s, respectively, so (A 6* /A 6) is ultimately equal to (¢/s). But ¢ and s
are corresponding sides of two similar triangles [shaded], so (t/s) = (¢’/p). Finally,
since (o’ /p) is ultimately equal to (o/p), we obtain

do* _Je
do [p
-\<-RAO [a]
RAG*
.FIGURE 5'
Thus (8) becomes
1 i
T(a) =52 [ [%]T(f)) ds. (9)

Consequently, to derive Poisson’s formula we need only show that [o/p] is the
Poisson kernel &2(z). This was precisely how Schwarz [8], working in the opposite
direction, originally deducted his result from Poisson’s formula.

Since pa =p’ ¢’ is constant, we may evaluate it for the dotted diameter through «
to obtain p o = (R% —r2), where r =|al. Thus we do indeed find that

A

p

As an interesting consequence of the geometric interpretation of the Poisson kernel,
we see that (with z fixed) the level curves of &, are the circles that are tangent to C
at z, with & = 0 being C itsell.

Returning to the issue of harmonicity, we see that if we permit ourselves differen-
tiation under the integral sign of (9), then it is sufficient to show that [o/p] is a
harmonic function of a. To see that it is, consider Ficure 5(b). Since the angle at E
is a right angle, we have

a]_ |z + al cosy =Re(z+a).
p |z —al z—a
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Because it is the real part of an analytic function of a, [o/p] is automatically
harmonic, and we are done.

This line of reasoning yields a bonus result. Let S be a harmonic conjugate of T, so
that f=T +iS is an analytic function. This function f is uniquely defined (up to an
additive imaginary constant) and so it must be given by

z+ta

S0 =gz [ (E5)ro) as,

for this is analytic and has T(a) as its real part. This result is called Schwarz’s
formula, and it enables us to resurrect the complete analytic function f from the
ashes of its real part on C.

4. Hyperbolic Geometry

If we specify arbitrary piecewise-continuous temperatures T(z) along the edge (the
real axis) of the upper half-plane, then there is another formula due to Poisson that
yields the temperature at any point a = X +iY (Y > 0):

i)Y
T(a) - W‘[—w[(x—x)2+Y2

We shall explain this result by reinterpreting (8) in terms of elementary hyperbolic
geometry. The transition from (1) to (10) will then be seen as nothing more than a
transition between the Poincaré and upper half-plane model of the hyperbolic plane.
First, however, let us obtain still another geometric interpretation of Poisson’s
formula.

For simplicity, let us employ the unit circle. Consider Ficure 6. Let the arc K be
heated to unit temperature while the rest of C is kept at zero degrees. By Schwarz’s
result, the temperature at a is T(a) = (K* /27), while the temperature at the center
of the circle is T(0) = (K/2).

Next, imagine yourself standing at a, looking out at a vast number of thermometers
placed along the circle. As you turn your head through a full revolution (remembering
to turn your feet!) let (T ), denote the average (over all directions) of the tempera-
tures you see. For example, Gauss’ mean value theorem may be restated as T(0) =
(T o.

In Ficure 6, (T), =(A/27), where A is the angle subtended by K at a. But we
see from the figure that

T(x)dx. (10)

A =L(K*+K),

s0 (T, = 1[T(a) + T(0)]: The average of the boundary temperatures as they appear
to you is equal to the average of the temperature where you are and the temperature at
the center. It is then easy to see that this is still true if we instead have many arcs at
different temperatures, and ultimately a general piecewise-continuous temperature
distribution. Thus Poisson’s formula may be re-expressed as

T(a) = 2(T), — T(0).

This result is due to Neumann [9]; we merely rediscovered it, as did Duffin [10] from
another point of view. For an interesting generalization, see [11].
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FIGURE 6

Ficure 7(a) generalizes Ficure 1(a) and is intended to make this result vivid.
Turning your head successively through the same small angle marked e you see the
thermometers located at the white dots on the boundary. The average of their
temperatures is then a good approximation [exact as e ~> 0] to (T ),, and hence to the
average of the temperature where you stand and the temperature at 0. Note how the
white dots became crowded together on the part of the boundary nearest you. As you
would expect, this part of the boundary therefore has the greatest influence on the
temperature where you stand.

FIGURE 7

To obtain our third and final interpretation of Poisson’s formula, let us return to
Ficure 6. Imagine that the disk is the Poincaré model of the hyperbolic plane, and
that you are once again standing at the point a looking out to K, which is now
infinitely far away on the horizon. How big does K appear to you in this distorted
geometry? To a godlike observer looking down on this model of the hyperbolic plane,
the straight lines along which light travels to you now appear to be arcs of circles
orthogonal to C, and so you see the angular size of K as being

hyperbolic angle = A + (o + O).
But we see in the figure that
(e +©) = 3(K*—K),

and hence we obtain the following remarkable fact:
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hyperbolic angle = 5(K* + K) + 3(K* — K)

= K*

=27T(a).
The temperature where you are is simply proportional to how big K looks!

Reinterpreting (8), we now see that d8* is simply the hyperbolic angle subtended

at a by the element of C: The temperature of each element of C contributes to the
temperature at an interior point in proportion to its hyperbolic size as seen from that
point. Much as we did in the Euclidean case, let < T > , denote the average of the

temperatures you see on the horizon of the hyperbolic plane as you turn your head
through a full revolution while standing at a. We have found that

T(a)=<T>,. (11)

[Again, we merely rediscovered this: The result (exceeding even the beauty of
Schwarz’s) is due to Bocher [12], [13]; the only explicit mention of hyperbolic
geometry we have found is Carathéodory’s [14].] We have chosen to present (11) as a
consequence of Schwarz’s result, but at the end of the paper we shall see that it can
be understood in a much simpler way.

The analogue of Ficure 7(a) is now Ficure 7(b). Standing at the same point as
before, and again turning your head successively through the angle e, the figure shows
the new locations of the thermometers you see on the boundary. The average of their
temperatures is then a good approximation [exact as e ~ 0] to < T > _, and hence to
the temperature where you stand. Note how the white dots again become crowded
together on the part of the boundary nearest you, so that this part of the boundary has
the greatest influence on the temperature where you stand.

From the vantage point of (11), the distinction between (2) and (8) evaporates.
Every point of the hyperbolic plane is on an equal footing with every other, it is
merely that the hyperbolic angle d6* happens to coincide with the more familiar
Euclidean angle d when a = 0.

Formulated in this way, we may carry the result over to the upper half-plane model
for hyperbolic geometry. (The full justification for this transition will be explained at
the end of the paper.) See Ficure 8. The horizon is now the real axis and ‘straight
lines” are now (for our godlike observer) semicircles meeting the real axis at right
angles. The temperature where you stand is now the average (as e ~> 0) of the
temperatures at the white boundary points in Ficure 8.

FIGURE 8

Ficure 9 analyzes this in greater detail. It shows both the hyperbolic angle A§*
and the Euclidean angle A6 subtended at a by the element Ax of the horizon.
Thinking of Ax as sufficiently small that T'(x) is essentially constant on it, the
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contribution to the temperature at a is (1,/27)T(x)A6*. Integrating along the entire
horizon we obtain

" 1(x) do*. (12)

T(a)=§1;fx

In order to put this into precisely the same form as (10), we need to find (d6* /dx).
We shall do this via an attractive and rather surprising fact: The non-Euclidean angle
A6* is exactly double the Euclidean angle A6, even if Ax is not small. To see this,
concentrate on the semicircle meeting the axis at p. The angle between the dotted
tangent at a and the vertical is clearly double that between the chord ap and the
vertical. The result then follows immediately.

Now consider Ficure 10. The small shaded triangle is constructed to be right
angled, and it is thus ultimately similar to the large shaded triangle as A# shrinks to
nothing. Thus (¢/Ax) is ultimately equal to (Y /). Also, since ¢ is like a tiny arc of
circle of radius €, it is ultimately equal to QQA@. Thus if A@ is infinitesimal,

QA8 ¢ Y
Ax ~ Ax Q-
We can now combine this with the previous result to obtain

do* d@] [Y] Y
LAY L ) T ] P S
dx [dx 2 02 2 (X—x)2+Y2

Putting this into (12), we obtain (10).

FIGURE 9

a=X+1Y

FIGURE 10
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While the precise form of the above argument may be new, the basic idea of
transferring Bocher’s result from the disk to the half-plane was given by Osgood [15].
For a different but related approach to (10), see [16]. For more on all three of the
interpretations thus far obtained, see [11].

5. Green’s General Formula

Here is the recipe for finding the temperature at the point a inside a simply
connected region R in terms of the values T(z) on the boundary B.

First, supply heat at the constant rate 27 to the point @ while holding the
temperature all round B at the constant value 0. After the heat flow has settled down,
the temperature in R will be a well-defined (except at a) harmonic function Z(z)
called the Green’s function of R with pole at a. Since B is an isotherm, the heat flow
vector H= —V<, will be orthogonal to it, and so its magnitude 2, (the local heat
flux) may be expressed as

n
where n measures distance in the direction of N, the outward unit normal vector to B
(see Ficure 11).

R

isotherm &= #(q

FIGURE 11

Given a harmonic function T on R, we may now use 2, as a tool with which to
find its values inside R in terms of its values T(z) on the boundary B. Here is
Green’s remarkable general formula:

1(a) = 5= $2,()T() ds (13)

where ds is an element of arc length along B. Thus 2, now plays the same role as
the Poisson kernel did in (1).

In order to understand this result we must first understand Riemann’s Mapping
Theorem: R may be mapped one-to-one and conformally onto the unit disk D. We
shall see in a moment that the existence of such a mapping is equivalent to the
existence of the Green’s function. In modern texts the mapping theorem is proved
independently of physical considerations, the existence of the Green’s function then
following as a corollary. It was otherwise for Riemann. He seems to have taken the



VOL. 67, NO. 2, APRIL 1994 105

existence of the Green’s function to have been guaranteed by Nature, and he was
thereby led to his mathematical mapping theorem. The following is one possibility as
to how this may have happened. For a better-motivated approach, see [3].

Let us first consider the behavior of the function «, in the immediate vicinity of a.
Physical intuition leads us to expect, irrespective of the temperatures assigned to B,
that heat will flow out of the source symmetrically: ¢, and 2, will be nearly
constant on a tiny circle K centered there. If the flow were perfectly symmetrical,
and if the radius of K were p, then

a

ap -’

27 = heat supplied to a = flux across K =2wp 2, = —2mp

Thus, very close to a, the temperature behaves like —In p. The precise statement is
that

£ =-lp+g, (14)

where g, is harmonic throughout R.
Let &#, be a harmonic conjugate of &, so that (except at a) F=Z, +iH, is
conformal. Since In p is the real part of log(z — @) it follows from (14) that F(z) =
—log(z — a) + F, where F is conformal throughout R. Since the imaginary part of F
is only determined up to a constant, we may choose Im F(a) = 0. Thus, very close to
a’
H,= —arg(z—a).
The advantage of this particular choice is that we may then interpret the value of #,
at a typical point g in the simple manner illustrated in Ficure 11. Follow the flow of
heat back from q to a; the angle at which it enters a is then — #,(q). We thus have
clear physical interpretations for both the real and imaginary parts of the mapping #.
With % in hand, we are now close to Riemann’s theorem. We require a mapping
that is conformal throughout R, but while the mapping & is otherwise conformal, it
has a logarithmic singularity at a. In order to undo this singularity, we are therefore
forced to compose & with the exponential mapping. The mapping f so obtained is
then conformal everywhere in D:
i

a

zow=f(z)=e TO=¢"Fue"
As illustrated in Ficure 11, and as was desired, f maps R conformally to D: The
pole at a maps to 0; the dashed isotherm at temperature #(q) maps to the dashed
circle of radius e ~#®; the streamline #, = #.(q) = — 0 entering a at angle § maps
to the ray entering 0 at angle 6.

We make a few further observations before returning to the explanation of (13).
Now that we possess the mapping f, any harmonic temperature distribution T(z) on
R may be conformally transplanted to a harmonic function T(w) on D (and vice
versa) by assigning equal temperatures to corresponding points of the two regions
T[ f(z)] = T(z). In particular, the values of T on B are transplanted to C.

Next, consider the Green’s function of D with pole at 0. See Ficure 11. On
grounds of symmetry, the isotherms must be circles centered at 0, and the streamlines
must be rays emanating from there. More precisely, it should be clear that if w
denotes a point of D then the Green’s function is —In|wl|. But this means [make sure
you can see this] that each point of D is at the same temperature as its preimage in
R; in other words, f conformally transplants the Green’s function Z(z) of R with
pole at a to the Green’s function of D with pole at f(a) = 0.
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This is no accident. More generally, let J(z) be a one-to-one conformal mapping of
R to some other simply connected region S with boundary Y. Then ] conformally
transplants the Green’s function (z) of R with pole at @ to the Green’s function of
S with pole at J(a). In particular, the streamlines of the flow in R map to the
streamlines of the flow in S. In this sense, the concept of the Green’s function is
conformally invariant.

The explanation is not difficult. Since &, is harmonic except at a, its transplant is
harmonic except at J(a). Also since &, vanishes on B, its transplant vanishes on Y.
To complete the proof, we must show that the source at a transplants to a source of
equal strength at J(a). To see this, recall that the local effect of an analytic function J
is an expansion by |J’| and a rotation of arg(J’). Geometrically, the source of strength
27 at a is characterized by the fact that the radii of the infinitesimal circular
isotherms round a are proportional to e~ ‘*™P¢74'“"¢ The mapping | merely expands
these by |J’(a)| to produce infinitesimal circular isotherms round J(a) having (by
definition) the same temperatures as the originals. Thus the radii of the transplanted
isotherms round J(a) are again proportional to e ~‘™P¢T4%4r¢ 5o we have a source of
strength 27 at J(a). Done.

We are now in a position to explain the general formula in a beautifully simple
way. To begin with, imagine that T(z) is a given harmonic function in R whose value
T(a) at an interior a we wish to determine from the boundary values. See Ficure 12.
Just as in Ficure 7(a), imagine standing inside R at a and turning your head
successively through the small angle o. But now suppose that light travels along the
illustrated streamlines of the heat flow H= —V¥, associated with the Green's
function. You would then see the thermometers at the illustrated points on the
boundary.

FIGURE 12

The key observation is that (even without passing to the limit of vanishing ) the
average of the observed temperature is conformally invariant. As before, let J(z) be a
one-to-one conformal mapping of R to some other simply connected region S with
boundary Y. Just as we did with f, let us choose J so that the directions of curves
through a are preserved (i.e., arg[ J'(a)] = 0). Let z, denote the point on B that you
see when you look in the direction 6, and let w, = J(z,) be its image on Y.

By the conformal invariance of the Green’s function, the image of the streamline
leaving a at angle 6 is the streamline leaving J(a) at the same angle. Thus w, is not
only the image of z,, it is also the boundary point which an observer at J(a) sees
when looking in the direction 6. But, by definition, the temperature at each point z,
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on B is transplanted to w, on Y, so the observer J(a) sees exactly the same
temperatures on Y as the original observer at a saw on B.

Passing to the limit of vanishing e, the conformal invariance of this average may be
expressed as

1 1 .
ﬂgir(zo) do = ﬂg,()){T(wo) de.

Ficure 12 illustrates the particular case where | =f is the previously constructed
function that maps R to D and a to 0. The virtue of this special case is that the
conformally invariant average may now be evaluated. By Gauss’ mean value theorem,
the average of T(w,) = T(z,) on C is the temperature T(0) = T(a) at the center:

%géT(zo) a6 = %éf(w“,) 6 =T(a).

Thus, returning to the left-hand side of Ficure 12, we have found that in the limit of
vanishing e the average of the temperatures you see on the boundary of R is the
temperature where you stand!

It now remains to show that this geometric construction is equivalent to the
conventional formula (13). On the left of Ficure 12, consider the shaded region—Ilet
us call it a “tube”—between two of the streamlines leaving a with infinitesimal
angular separation d6, and let the tube intercept B at z, in an element of length ds.
Since 27 of heat flux emerges symmetrically from a, the flux emitted into the tube is
equal to df. Furthermore, since ¢, is harmonic, no heat is created or destroyed in
the tube, so all the heat that enters the tube at the source must emerge at the other

end. Thus d6 = 2 (z,) ds, and

T(a) = %éT(zo) d = %q%_@a(z)T(z) ds,

as was to be shown. Surprisingly, we have not found this interpretation and explana-
tion elsewhere in the literature. We hope you will agree that it contrasts strikingly
with the conventional approach (c.f. [7], p. 209).

This line of reasoning also explains the stronger result that (13) solves Dirichlet’s
problem for R. Using f to conformally transplant the given boundary values from B
to C, we know that Poisson’s formula allows us to construct the solution to Dirichlet’s
problem in D. Transferring this solution back from D to R with f~!, we have found
the harmonic function T in R, and its value at a must then be given by (13). You can
now understand why we lavished so much attention on the special case of the disk.

We can also use this conformally invariant average to understand much of what has
gone before in a simple, unified way. For example, the average < T >, depicted in
Ficure 7(b) is merely the special case in which R is the unit disk. To see this, recall
(7). The conformal mapping h(z) of D to itself interchanges 0 and @ and maps circles
to circles. It follows [why?] that it interchanges Ficure 7(b) and Ficure 1(a).
Similarly by employing an inversion in a circle centered on the real axis it is possible
(see [5]) to construct an analogous (conformal and circle-preserving) mapping from
the upper half-plane to the unit disk. It follows that the result in Ficure 8 is also a
special case.

Although we hope you will agree that this is all delightfully intuitive, one could still
wish for an explanation of (13) that dealt directly with R rather than requiring the
assistance of the disk. It does not appear to be widely known, but such an explanation
is indeed possible. Working with electricity rather than heat, James Clerk Maxwell
[17] was able to give a direct explanation of (13) by arguing in terms of electrostatic
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energy. But because the required reasoning is purely physical, we shall not enter into

th

is matter here.
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50 YEARS AGO...

Grace Chisholm Young died just before she was to
receive an honorary degree from the Fellows of Girton
College, Cambridge. Grace Chisholm was born near
London in 1868, was educated at home, and entered
Girton, the first English institution to allow women to
receive a university education. She attained a superior
score on the Cambridge Tripos and continued her
education at Gottingen, earning her Ph.D. in
1895—the first woman to receive a German doctorate
in mathematics through the regular procedure!

from Victor J. Katz, A History of Mathematics, Harper Collins,
1993.



