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1. Introduction to Map Coloring

The following statement is not true:
“Every map can have one of four colors assigned to each country so that every pair of
countries with a border arc in common receives different colors.”

But isn’t this the statement of the famous Four Color Theorem that was proved
about 15 years ago using lots of computer checking? Has a flaw been found in that
massive piece of work?

Ficure 1 shows a small example of a map that needs five colors if every pair of
adjacent countries is to receive different colors. The important feature is that one
country (#5) is a disconnected country of two regions.
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FIGURE 1
A planar map needing five colors.

Maps having disconnected countries are certainly possible; an example is the map
of North America. This raises the following cartography question: Can today’s map of
the world be colored with four colors so that all pieces of each country receive the
same color and so that no two different countries with a border arc in common receive
the same color?

In any case, Ficurr 1 is not a counterexample to the Four Color Theorem; here’s
what that famous theorem really says [1].

Four Coror TueoREM. Every map drawn in the plane (or on the surface of the

sphere) can have one of four colors assigned to each connected region so that every
pair of regions with a border arc in common receives different colors.

"This article is based on talks given at the Pi Mu Epsilon Conference at St. John's University,
Collegeville, MN in March, 1990. This research was supported in part by an NSF Visiting Professorships
for Women grant, #RII1-8901458, and by the University of Washington, Seattle, WA.
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This result was first conjectured in 1852 by Francis Guthrie; a proof was published
in 1879 by A. B. Kempe, but, 11 years later, P. J. Heawood found a fatal flaw in that
proof. Finally in 1976 the theorem was proved by K. Appel and W. Haken, although
in an unusual manner. (A thorough history of the problem can be found in [5].)
Briefly, Appel and Haken’s proof consists of showing that every planar map contains
one of a list of at most 2,000 configurations, and that each configuration admits a
reduction, allowing a proof by induction. Although the numbers involved are unusu-
ally large, the most unusual (and controversial) part of the proof is that about 1,200
hours of computer time were used to generate the list of 2,000 configurations and to
check that colorings on these admit the necessary reduction. Thus the proof depends
upon electricity—that is, upon a physical experiment—and that dependence is most
unusual in the history of mathematics. Both the theoretical and the computational
aspects of the proof have been carefully checked, but mathematicians would very
much like to see a simpler or more “natural” proof. Several papers ([2, 12, 28]
contain detailed and substantive analyses of the proof.

The map in Ficure 1 might also be a representation of political boundaries in
which area #5 represents an empire, two countries joined together. In the past, when
countries were annexed to form empires, it was the custom of mapmakers to color all
parts of an empire with the same color; thus maps of empires might require more
than four colors. The mathematics of empire coloring was first studied by Heawood
over a hundred years ago. In this paper we survey some of his work and more recent
map-coloring variations by G. Ringel. Then one of their results will be applied to a
modern problem in the testing of printed circuit boards.

2. Coloring Maps of Empires

When Heawood both found a flaw in Kempe’s argument and discovered that he could
not repair it, he invented some generalizations about map colorings that, to a certain
extent, he could solve. His research began the field of topological graph theory as
studied today. First he investigated the empire-coloring problem: If maps are made
up of countries united into empires, then how many colors are needed to color such
maps provided that all countries in an empire receive the same color and that empires
with a border in common receive different colors? Heawood proved that if every
empire consists of at most M connected regions (called an M-pire by B. Jackson and
G. Ringel [16]), then the map can be colored with at most 6 M colors.

We shall present a proof of Heawood’s upper bound, but first, we ask whether 6 M
is the best possible bound. For M =1, it is not: If empires consist only of single
connected regions, then four colors are enough by the Four Color Theorem. But for
M = 2, Heawood found an example of 12 empires, each consisting of two regions and
so forming a 2-pire, such that every pair of empires has a border in common. Thus 12
colors are needed; however, Heawood’s example was sufficiently irregular that he was
unable to generalize it for M > 2.

After an introduction to some facts and techniques of graph theory, we'll prove
Heawood’s theorem and then summarize recent work of Jackson and Ringel [16] that
settles the question of the best possible coloring bound for M-pires with M > 1.

We make a change now from maps to graphs as is customary with practitioners in
this field. Given a map C drawn in the plane, we form a planar graph by creating a
vertex for each connected region of C, and by joining two vertices by an edge if the
corresponding regions have a border arc in common. This graph is called planar
because it can be drawn in the plane without edge crossings. Ficure 2 shows the
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planar graph that results from the map in Ficure 1; notice that a vertex is created
also for the outer, infinite region of the map. And given a planar graph, we could
construct a map with countries having the prescribed borders in common.

FIGURE 2
The planar graph derived from the map of Ficure 1.

Previously we wanted to color regions of a map; now we color vertices of the graph.
For k a positive integer, a graph is said to be k-colored (or k-colorable) if each vertex
is (or can be) assigned one of k colors so that every pair of vertices that are joined by
an edge receives different colors. Why bother with this change from maps to graphs
and then coloring vertices rather than regions? This change certainly allows us to use
less paint and, more to the point, this .convention is better suited to current
algorithmic approaches to graph theory problems, allowing for efficient storage and
usage of graphs by computer programs.

Here then in the language of graph theory is Heawood's M-pire problem: Prove
that every graph that is derived from an M-pire map can be 6 M-colored so that (in
addition) all vertices corresponding to the same empire receive the same color.

Here is the first, crucially important, tool of the trade. A face in a planar graph G,
drawn in the plane, is a connected region in the plane minus the edges and vertices
of G.

EuLer’s Formura. If G is a connected planar graph, drawn in the plane with n
vertices, e edges, and f faces, then

n—e+f=2

For a proof, see [3, 7]. An immediate consequence of this formula is that the number
of edges in a planar graph is limited. Suppose we count the number of edges
bordering each face: Let ¢; denote the number of edges on the ith face (counting an
edge twice if both sides border on the same face). Then we get

2e=e, te,+ ... +e;=3f,
since every edge is counted exactly twice in the sum of the ¢;, and since each face has

at least three bordering edges (provided the graph contains neither loops nor multiple
edges). Thus

2e/3>f.
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Applying Euler’s Formula,
n—e+2e/3>2,
or
e <3n—6. (1)

Similarly, if the ith vertex has deg; incident edges, (deg; is called the degree of the
vertex), and we sum the degrees of all vertices, we get

2¢ =deg, +deg, + + -+ +deg,
since each edge is counted twice, once at each end-vertex. Then, by (1)
deg, +deg, + -+ +deg, <6n—12. (2)

We are almost ready to 6 M-color M-pires. Notice that our goal is to color certain
graphs with an extra constraint imposed because the graph comes from an M-pire:
Certain vertices are supposed to receive the same color. That's a bit unnatural to a
graph colorer. Most graph-coloring theorems and algorithms assume that a graph just
should be colored so that no two adjacent vertices receive the same color; this extra
constraint is a bother. So we’ll get rid of it appropriately.

The idea is a simple one. Recall that we began with a planar M-pire map, and from
this formed a planar graph—call it G—with a vertex for each connected region.
From G we form a new graph G* by identifying the set of vertices of G correspond-
ing to an empire into one vertex of G* and removing any multiple edges. We call G*
the M-pire graph associated with an M-pire map. It is the graph G* that we want to
color (with as few colors as possible) since all countries of the same M-pire will
necessarily receive the same color and all map adjacencies have been recorded in G*.
But G* most likely will no longer be a planar graph.

FIGURE 3
G* formed from G of Ficure 2.

We shall prove that G* can always be 6 M-colored. Suppose G* has n* vertices
and e* edges. Since each vertex of G* comes from at most M vertices of G, a planar
graph with, say, n vertices and e edges, Mn™ > n, and e¢* <e. Thus in G* we have
from (2)

deg, +deg, + -+ +deg +=2¢* <2e¢ <6n—12
< 6Mn* — 12.
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Hence the average degree of vertices in G* is bounded:

(deg, +deg, + - -+ +deg,«)/n* <6M —12/n*
<6M,
and so G* contains a vertex of degree at most 6M — 1.

Tureorem 1 (Heawood) [15]. Every M-pire graph G* can be 6 M-colored.

Proof. By induction on n*. If n* <6M, then G* can easily be 6 M-colored by
placing a different color on each vertex. Assume the theorem is true for every M-pire
graph with fewer then n* vertices, and let G* be an M-pire graph with n* > 6M
vertices.

Find a vertex v of G* of degree at most 6M — 1; delete v and all its incident
edges. The resulting graph is still an M-pire graph (why exactly is this true?) and so,
by induction, can be 6M-colored. Since v in G* is adjacent to at most 6 M — 1
different colors, there is a color available to place on v. Thus G* is 6 M-colored.

Cororrary 1. Every (ordinary) planar graph (or map) can be 6-colored.

But are 6 M colors sometimes necessary (when M > 1)? Since 1980, examples have
been known of 3-pires and 4-pires that need 18 and 24 colors respectively; colorful
pictures of these are presented in [8]. In 1983 B. Jackson and G. Ringel were able to
settle the whole question as follows.

M-pire Tueorem [16]. For every M > 1 there is an M-pire graph that requires 6M
colors. In fact, the graph consisting of 6M mutually adjacent vertices is an M-pire
graph.

The graph of 6M vertices with every pair of vertices joined by an edge is called the
complete graph on 6M vertices and is denoted by Kg,,. K¢y, is 6 M-colorable, but
cannot be colored with fewer colors. The M-pire theorem can'be restated as follows:
There is a planar map (or graph) that consists of 6 M empires, each with at most M
regions, such that every empire has a border in common with every other. Jackson
and Ringel proved this theorem by constructing symmetrical maps using the theory of
“current graphs” as developed by Ringel and J. W. T. Youngs for a solution of another
problem invented by Heawood (this problem will be discussed in Section 5). Thus
the problem of coloring M-pire maps has been completely and beautifully settled
when M > 1. A thorough exposition of this subject is given in [14].

3. Coloring Maps of the Moon

Ringel suggested the following variation on the empire coloring problem. Suppose the
Moon were colonized and we want to color a map of the Earth and the Moon so that

1. adjacent regions on Earth or on the Moon receive different colors, and
2. a country on Earth and its lunar colony receive the same color.

Suppose now that there are no empires on the Earth or Moon; each country and
colony is a connected region.

But this is just a 2-pire problem. Let G, and G,, be the corresponding planar
graphs of the Earth and Moon maps; side-by-side they form one planar graph that
comes from a 2-pire map (see Ficure 4). When each vertex of G,, is identified with
its country-vertex in G,, the resulting graph G* is a 2-pire graph and so can be
12-colored by Theorem 1.
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FIGURE 4

Kg as an Earth/Moon graph.

A graph G* is said to be an Earth /Moon graph (or to have thickness 2) if it can be
divided into two planar graphs by making two copies of the vertex set of G*, and
then assigning each edge of G* to one of the two copies so that two planar graphs
result. Think of one planar graph as representing the terrestrial countries and the
other the lunar colonies. More generally, a graph is said to have thickness t if its
edges can be partitioned into ¢, but not fewer, planar graphs. This thickness
parameter is studied by graph theorists both for its relevance to general graph theory
and for applications in computer science. In the next section, we'll consider an
application of thickness-2 graphs.

So what’s new in Ringel’s question about coloring Earth/Moon graphs if we
already know they can be 12-colored? Again the important point is whether or not 12
colors are needed. Notice that the definitions of an Earth /Moon graph and of a 2-pire
graph are not the same, and consequently a 2-pire graph might not be an Earth/
Moon graph. If G* is a 2-pire graph, some vertices can be split into two so that a
planar graph, say, G results. But it may not be possible to divide G into two separate
planar graphs, each containing one copy of each vertex, as is required for an
Earth /Moon graph. For example, the complete graphs K, K;,, K;;, and K, are all
2-pire graphs, but it is known that none of them is an Earth/Moon graph. They all
have thickness 3 because of the following result. (For a summary of the several proofs
involved, see [4].)

Tueorem (Beineke, Harary, Alekseev, Gonchakov, Vasak, Mayer). The thickness of
the complete graph K, is given by

_[l(n+17)/6], ifn#9,10,
HKa) = {3, ifn=9,10.

Ficure 4 shows how K arises from two planar subgraphs. Kg cannot be so created,
but if the Earth had two moons, then it would be possible to find maps on the three
spheres that would unite to form a K. Thus Earth /Moon graphs will need at least 8
colors, but since the graph K, has thickness 3, we can’t conclude that 12 colors are
needed for Earth/Moon graphs.
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The least number of colors that we need to have on hand so that we can color every
Earth/Moon graph is called the chromatic number of Earth/Moon graphs (and of
thickness-2 graphs). As reported in [8], T. Sulanke found a map of the Earth and
Moon that needs 9 colors, although it does not come from Kg; Ficure 5 shows a
schematic version of the corresponding Earth/Moon graph. It is a worthwhile
exercise to check that this graph can be 9-colored, but not 8-colored, and that its
edges can be separated into two planar subgraphs.

FIGURE 5
A 9-chromatic Earth /Moon graph.

Open Problem. What is the chromatic number of Earth /Moon graphs? 9?7 10? 117
127

Progress would be made if any of these possibilities could be eliminated. In general
the chromatic number of thickness-¢ graphs is not known exactly. By the preceding
theorem and Theorem 1, the chromatic number is one of 6¢ — 2, 6t — 1, or 6¢ for
t> 2.

4. An Application of Earth /Moon Coloring to the Testing of Printed
Circuit Boards

We turn to an application that, perhaps surprisingly, uses the coloring results of the
previous section to develop an efficient procedure for the testing for certain errors in
printed circuit boards. This example comes from three researchers at AT&T Bell
Laboratories in Murray Hill and Whippany, NJ [9].

It is not hard to think of potential applications of the thickness parameter to
electronics. Suppose you have a system of electrical units, certain pairs of which
should be connected electrically. Such a design has a graph naturally associated with
it. A goal could be to develop a layout for that graph with, say, electrical wires or
solder joining the units. To avoid crossings and unwanted electrical connections, the
joining should be done on multiple planar layers. Or, as in the design and fabrication
of VLSI chips, connections should be etched onto separate layers of silicon.

For this application we focus on printed circuit boards (PCBs), small electrical
circuits that are widely used in motorized, electrical, and electronic equipment. (For
examples and illustrations, see [24].) We postulate a simple, but realistic, mathemati-
cal model for these circuit boards. We assume that a PCB consists of electrical units
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placed on a rectangular array with some of the units joined electrically along
horizontal and vertical lines. Typically an array consists of a 100 X 100 grid with
about 500 electrically connected components (called nets). And each net has a simple
structure: Every pair of units in one net is joined by a unique conductor path; this
structure is known to graph theorists as a tree. An example is shown in Ficure 6.

We focus on one specific problem, that of finding certain extraneous and unwanted
connections that may have mistakenly occurred during the manufacturing process. In
practice a design is set for a PCB; thousands or even millions of these inexpensive
PCBs are made; and as they roll off the production line, a quick and accurate test is
needed to see whether there are errors on the board. If so, the board is discarded; no
attempt is made to find and correct the error. (As an example of what happens when
quality control is not effective, a front-page article in the New York Times [20]
reported recently on errors in a $12 circuit board that caused a delay in manufactur-
ing 2,500 Air Force rockets, each worth about a million dollars.)

Here is a mathematical statement of the problem we consider.

Problem. Determine whether any extraneous horizontal or vertical conductor paths
have been introduced in the manufacturing process, connecting two nets that should
not be electrically connected (such a connection is known as a short circuit).

In practice, erroneous horizontal and vertical paths are the most common short
circuit, and so this problem focuses on such mistakes.

There is a simple answer to the problem: Check all pairs of nets to see if any is
incorrectly connected. If there are n nets, such a check requires n(n — 1) /2 tests and
is by far too slow a procedure. For example, with 500 nets, about 125,000 tests would
be needed. The better solution presented in [9] necessitates only 11 checks per board,
regardless of the number of nets. We also show how to reduce the checking to a mere
four per board.

Not surprisingly, we make a graph from the intended PCB. The PCB graph is
defined to have

1. a vertex for each net of the (correct) PCB, and
2. two vertices joined by an edge if there is a horizontal or vertical line going through
the corresponding two nets and passing through no intermediate net.

Ficure 7 shows the PCB graph for the example of Ficure 6—for the moment, ignore
the labels on the vertices. In this figure the vertices are positioned to correspond to
the position of the nets in the PCB of Ficure 6.

Perhaps a better name for this graph would be a “graph of possible mistakes.”
Imagine that in the fabrication process two passes are made over the PCB, one pass
creating all horizontal connections and the second creating all vertical. The problem
of concern is that too much connecting might be done; the fabrication process might
not shut off correctly and so might connect more than is required. Thus in the PCB
graph two vertices are joined if it is possible for the fabrication machine to mistakenly
join the corresponding nets by a direct horizontal or vertical connection. But what
about the condition of passing through no intermediate net? Look at Ficure 6:
Suppose nets x and y were mistakenly connected by a horizontal line. Then the
connection would necessarily connect x with z and z with y. In other words, if we
check that x and z are not connected and that z and y are also not connected, then
we know for sure that x and y are not mistakenly connected. Hence there is no need
for an x-to-y edge in the PCB graph.

The key observation now is that the PCB graph has thickness 2. Its edges can be
divided into two planar graphs, one with all edges corresponding to possible vertical
connections and one with edges from horizontal connections. That observation and
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the fact that a thickness-2 graph can be 12-colored leads to the following checking
algorithm.

PCB-checking Algorithm. Given a plan for a PCB and the corresponding PCB
graph G:

1. 12-color G, and transfer this coloring to the nets of the plan.

2. From the plan for the PCB, construct 12 external conductor tree-structures,
called “supernets,” so that when each supernet is attached to the PCB, all nets in the
same color class become electrically connected.

3. Check all pairs of these supernets to see if any two of these are (mistakenly)
electrically connected.

Here are a few more words of explanation. Consider all nets that receive one color,
say, color #1. Since no two of the corresponding vertices in G are joined by an edge,
no two of these nets need to be tested for a mistaken connection. A “supernet,” such
as those shown in Ficure 8, is some simple, 3-dimensional electrical connection
(shaped perhaps like an octopus or an n-pus) that attaches to the circuit board and
electrically connects a set of nets.
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FIGURE 6
A printed circuit board model.
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FIGURE 7
The PCB graph from Ficure 6 with its vertices 8-colored.
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In step (3) an electrical probe can check each pair of supernets. If, say, supernets
#1 and #2 are electrically connected, then some net colored 1 and some net colored
2 are mistakenly connected (and we throw the board out). But if not, then no net of
color 1 is connected to a net of color 2, and we proceed to test other pairs of
supernets. With 12 supernets, there are 1211 /2 = 66 pairs that might need to be
tested. Granted, the creating of these supernets takes some time and money, but
recall that we are imagining that a machine (or several) is creating thousands of PCBs
following one master plan so that the checking supernets can be used repeatedly as
the PCBs roll off the line.
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FIGURE 8

The printed circuit board of Ficure 6 with supernets attached.

With another gadget we can reduce the number of tests even more. Suppose we
test supernet #1 versus #2. If they are electrically connected, we throw the board
out, but if not, we add a “gate”, some simple electrical connection to make these two
supernets electrically connected. Next we test this united #1-2 supernet versus
supernet #3. If there is an electrical connection, then a net in color class 3 is
mistakenly connected to one of color class 1 or 2. We don’t care which; we just throw
the board out. But if not, we connect supernet #3 up with #1 and #2. Continuing
with this checking and connecting, we see that, with a correct board, after only 11
connections of supernets and 11 tests, we detect that we have a board free of the
kinds of mistakes for which we were checking. Ficure 7 shows the PCB graph from
Ficure 6 together with an 8-coloring of its vertices. Then Ficure 8 shows the
corresponding supernets and the connecting devices to reduce the checking to 11
steps.

Allen Schwenk (personal communication) has recently pointed out how to further
reduce the number of checks to four, with additional gadgetry. Take the existing
supernets, numbered 1,2,...,12, and think of these numbers, expressed in binary,
each with exactly four binary digits (called bits). Make a supersupernet that connects
the supernets labeled with numbers beginning with a 0 bit, and make a similar
supersupernet that connects the supernets labeled with numbers beginning with a 1
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bit. For the first test, check if these two supersupernets are electrically connected. If
not, create two supersupernets, one connecting the supernets with a 0 in the second
bit and one connecting the supernet with a 1 there. For the second test, check if these
two are connected. Do the same creation and test for the third and fourth bits. If
there is an erroneous connection, we will detect it: If there is a connection between a
net colored i and a net colored j, the binary representation of i and j differ in some
bit, and thus electricity would flow when the two supersupernets for that bit were
tested. Notice that in these tests we have not detected all possible errors, such as
those when too few connections are made within a net or when some extra zigzag-like
connections are made between nets, but this approach does solve the problem of
concern to the AT &T researchers.

5. Coloring Ordinary Maps and Empire Maps on Surfaces

Now we return to the realm of map coloring. Recall the first example of a map that
needed more than four colors in Ficure 1. There’s another way in which maps might
need more colors, and Heawood thought of this one too. Suppose a map were drawn
on the surface of a torus (a donut) or a 4-holed torus (like a pretzel). Then the map
might need as many as 7 or 10 colors, respectively. Here’s some motivation for such
topological map drawing and coloring.

Thinking now in terms of graphs, notice that a graph can be drawn in the plane
(without edge crossings) if and only if it can be so drawn on the surface of a sphere.
But what about graphs that can be drawn in neither place, such as Ky or any K, with
n = 5?7 One trick would be to add bridges or handles to the plane or sphere so that
edges can traverse these and so avoid edge crossings. The sphere plus a handle or
plus g handles (g > 0) is essentially the same as the torus or the g-holed torus,
respectively; topologists call this essential similarity a homeomorphism. For our
purposes, we use the fact that a graph can be embedded (i.e., drawn without edge
crossings) in the plane plus g bridges if, and only if, it can be embedded on the
g-holed torus, also known as the surface of genus g. The genus of a graph is defined
to be the least g such that the graph can be embedded on the sphere plus g handles.

For example, it is not hard to see that K5 embeds on the torus; but with a little
more effort one can also embed K and K, there. So in particular, graphs that embed
on the torus may need as many as 7 colors. Ficure 9 shows the corresponding map
situation, a map of seven mutually adjacent regions. Heawood discovered such a map
and proved that every graph on the torus can be 7-colored.
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FIGURE 9
Seven mutually adjacent regions on the torus.
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He also proved a related result for each surface of positive genus. Let x(g) equal
the minimum number of colors needed to color every graph that embeds on the
sphere plus g handles, g > 0.

Tueorem 2 (Heawood) [15]. For g >0, x(g) < 1(1/2) (7 +y/48g+1 )J

So, for example (1) <7, x(2) <8, x(6) < x(7) <12, and x(17) < 17. (Note that
substituting g = 0 yields x(0) < 4, but Heawood’s proof does not cover this case.) A
good introduction to the mathematics and history of this problem is found in [25].

Why is Heawood’s theorem true? Soon (in Theorem 3) we’ll give a proof of this and
a more general result about empires on surfaces that depends upon a generalization of
Euler’s Formula to surfaces of positive genus, but first, let's see where Heawood’s
bound comes from.

EuLer-Poincaré Formura. If G is a graph, embedded on the g-holed torus with n
vertices, e edges, and f faces, then

n—e+f=2—-2g.
If every face is a contractible region, then
n—e+f=2-2g.

For a proof, see [11, 29]. Ficure 10 shows three embeddings of K, on the torus; only
the last has the nice property that every face is contractible (or homeomorphic to a
planar disk). Another way to think of this property is that equality occurs in the
Euler-Poincaré Formula when the embedding uses all the handles and is not really
embedded on a sphere with fewer handles.

N> > >
> = >

FIGURE 10
Embeddings of K, on the torus.

Using the Euler-Poincaré Formula and arguing just as we did for inequality (1) in
section 2, we have in all cases that

e<3n+6(g—1).

How large a complete graph K, could we embed on the sphere plus g handles?
Such a graph has n(n — 1)/2 edges and so it must be the case that

n(n—1)/2<3n+6(g—1). (3)
Thus
n®—Tn+12(1—-g) <0,
and by the quadratic formula

n<(1/2)(7+ /49 +48(g—1) )
n<|(1/2)(7+/48g+1)|.

so that
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Note that from (3) it also follows that

g=[(1/12)(n = 3)(n—4)]. (4)
But what is the genus of K,? Is it the lower bound of line (4)? Equivalently, when

n= 1(1/2) (7 +y48g+1 )|, can K, be embedded on the sphere plus g handles? If
so, then l(l /2) (7 +/48g+1 )J colors are needed for graphs that embed there.
Heawood blithely assumed that since the answers to the preceding two questions
were YEs for the torus, n =7 and g = 1, they must be ves for all larger n and g. His
intuition was correct, but there was no proof of these facts until 1968 when the
following deep and difficult result was proved principally by Ringel and Youngs, with
help from others on a few cases.

Mar-Coror Tueorem (Ringel, Youngs, Gustin, Guy, Mayer, Terry, Welch)
[23]. The genus of K, is [(1/12)(n—3)(n—4)], and consequently for g> o0,
x(@)=|(1/2)(7+V48g+1)).

Thus the equivalent of the Four Color Theorem was solved first for all surfaces except
for the sphere (and without computer help).

But Heawood imagined even more, combining the ideas of maps on surfaces and
empires. Suppose an M-pire map is drawn on the sphere plus g handles, and suppose
G is the corresponding graph embedded on the same surface. Let the minimum
number of colors needed for all such graphs be denoted by y(g, M) where we
require that all vertices coming from the same empire receive the same color.

Tueorem 3 [15]. For all g >0 and M > 1, except for the case g =0 and M = 1,

6M+1+V/48g+ (6M + 1) — 48
x(g, M) < 5 :

As in the case of M =1 and g> 0, this formula can be motivated as above by
supposing that K, is an M-pire graph that arises from vertex-identifications of a
graph embedded on the sphere plus g handles.

Notice first that for g=0 and M > 2,

6M+1+/48g + (6M+ 1) — 48
M< >

<6M +1,

and so the upper bound in these cases of Theorem 3 is 6 M. We have seen a proof that
x(0, M) < 6M in Theorem 1, and by the M-pire Theorem of Section 2, x(0, M) = 6M
for M > 2. Notice also that for g >0 and M = 1, Theorem 3 coincides with that of
Theorem 2, whose proof we haven’t yet seen, and by the Map-Color Theorem x(g,1)
actually equals this upper bound when g > 0. Now we'll prove Theorem 3 in general,
and then summarize what is known when y(g, M) equals this upper bound. (Notice
the parallels with the proof of Theorem 1 although, as we’ll point out, this argument
fails for g =0.)

Proof of Theorem 3. The case of g = 0 was proved in Theorem 1, and so we assume
that g > 0.

If G is an n-vertex, e-edged graph embedded on the sphere plus g > 0 handles
that arises from an M-pire map, we may identify vertices from each empire to obtain
a graph G* that should be (normally) colored and that may no longer embed on the
same surface. If G* has n* vertices and e* edges, then n < Mn*, e* <e, and by the
Euler-Poincaré Formula

e*<e<3n+6(g—1)<3Mn*+6(g—1).
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The proof now proceeds by induction on n*. If

6M+1+V/48g+ (6M +1)® — 48
n* < 5 ,

the result is clearly true; so suppose

6M+1+y/48g + (6M +1)> — 48
n* > 5 .

ES — —
Then 2ne* < 6M + %*——Q < 6M + 24— 1)

6M+1+y48g+ (6M+1)°—48
(Notice that the second inequality holds only for g > 1.) Clearing the radical in the
denominator of the previous fraction, one obtains:

90" 24(g—1){6M+1—\/48g+(6M+ 1)° - 48 )
M+

=0 —48(g-1)
—(6M+1) +V/48g + (6M + 1)® — 48
— 6M + 5
6M — 1+ /48 + (6M +1)° — 48

2

Thus there is a vertex v of degree at most

[6M—1+\/48g+(6M+ 1) — 48 }
2

6M+ 1+ /48 + (6M + 1)> — 48 J 1
i _

Remove v, use induction to color the remaining vertices with

6M+1+\/48g+(6M+1)2—48‘
)

colors, and extend this coloring to v since it has one fewer adjacent vertices than the
number of colors being used.

This argument with M =1 (the nonimperialist case) gives a complete proof of
Heawood’s bound (in Theorem 2) for coloring ordinary maps on surfaces. Good
expositions of this and related aspects of topological graph theory can be found in
[3, 14, 25], but, surprisingly, almost no introductory text on graph theory except for
the recent book [14] contains a proof of this (M = 1) bound (although one text
contains an incorrect proof). Proofs of this nonimperialist case can be found in more
specialized texts [6, 11, 22, 29], while the fully general case of Theorem 3 appears in
[21].

Is the upper bound of Theorem 3 always achieved by some M-pire graph? Notice
that for the torus, where g = 1, the upper bound is simply 6 M + 1. H. Taylor [26] has
announced that for each M there are M-pire graphs on the torus, achieving the bound
of 6M + 1; his work is based on results of S. W. Golomb [10] on “graceful” labelings
of graphs. And for the fully general case, Jackson and Ringel [18] have studied the
situation intensively and have proved that the upper bound is achieved for at least
12.5% of the remaining cases.
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Tueorem [18]. For g > 0,

6M+1+/48g+ (6M + 1)® — 48

(1) when M is even and the right-hand side of (5) is congruent to 1 modulo 12, and
(2) when M is odd and the right-hand side of (5) is congruent to 4 or 7 modulo 12.

It is also possible to consider empire maps on nonorientable surfaces such as the
projective plane, the Klein bottle, or the sphere plus k cross-caps, k> 0. Then a
formula analogous to that of Theorem 3 can be proved similarly, but again the hardest
work is showing that equality can be achieved. Specific results are known, and in
general the upper bound has been shown to be achieved in about 25% of the cases; a
summary of these results is contained in [18].

Heawood thought up a variety of problems and questions that have intrigued
researchers for years. Others since Heawood have embellished upon his ideas, some
in equally fanciful map terms (e.g., [17]), others with more abstraction [13], and
several with applications in theoretical computer science. For example, the concept of
thickness has considerable applicability, beyond that of PCBs, in the area of complex-
ity of algorithmic problems and in the theory of NP-completeness [19]. General
graph-coloring questions and related algorithmic problems, not just in the context of
maps, are some of the most widely studied today, because of both their difficulty and
their applicability (see [27]).
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Fractal Basin Street Blues

MAURICE MACHOVER

St. John’s University
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There was a young fractal named Fracta,

Who certainly knew how to factor;

She tried out ceramics but switched to dynamics,
And married a strange attractor.




