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1. Introduction

Continuous functions of a single variable have been studied extensively for over 200
years. Great mathematicians such as Newton (1642-1727), Leibniz (1646-1716), and
Euler (1707-1783) have left enduring monuments in this field. Their rich achieve-
ments (for example, Euler published 886 papers and books in his 76 years of life) now
comprise the major part of the calculus with which every student of science and
engineering is familiar. It is hard to believe that in such a field, ploughed and
cultivated repeatedly by so many great masters, there is still some virgin land.

In 1975, the article: “Period three implies chaos”, was published in the American
Mathematical Monthly by Li and Yorke. (Here, the word “period” is used in a
different way from that seen in elementary mathematics. For example, period three
means that there is a point x, such that f3(x,) =f(f(f(x,) =x,, f(x,) #x, for
k =1,2; in other words, the image of x, comes back to x, after three iterations.) In
that article, Li and Yorke announced that a new theorem for continuous functions of a
single variable was discovered. The theorem states that if a continuous function has
period three, it must have period n for every positive integer n. Soon afterwards, it
was found that Li and Yorke’s theorem is only a special case of a remarkable theorem
published a decade earlier by Soviet mathematician A. N. Sarkovskii, in a Ukrainian
journal. Sarkovskii reordered the natural numbers and proved that if | <m (which
means | is “less than” m in Sarkovskii’s ordering) and if a function has period | then
it must have period m. The number 3 is the “smallest” in Sarkovskii’s ordering. So,
obviously, period 3 implies all the other periods, and Li-Yorke’s theorem was not a
new one. However, it was in Li-Yorke’s article that the new concept of chaos was first
introduced into mathematics. People were surprised that iterations of even a very
simple continuous function of a single variable can display extremely complicated
chaotic behavior.

The original proof of Sarkovskii’s theorem is quite difficult. More recently, several
authors have simplified the proof (see for example, [3, 5]), however, their proofs are
still overly complicated. In this article, we introduce a proof that is based on the
intermediate value theorem, accessible to readers with some knowledge of calculus.

2. Common Facts and the Intermediate Value Theorem

Without any special knowledge of mathematics, one can understand the following
common facts:

Two trains that depart at the same time from New York and Chicago, destined for
Chicago and New York, respectively, must meet each other along their trips.

In a marathon race, a contestant who is lagging behind at first and wants to win
must catch up and pass all the other contestants.

Now, let’s play a little trick on these common facts. Is it still so obvious?
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Suppose Robert starts to climb up a mountain at 8 a.m. and reaches the top at 6
p-m., and then at the same time next day begins his return using the same route. Is
there any place on his way up and down the mountain where his watch indicates the
same time?

The answer is yes. We can imagine two Roberts start at the same time, one
climbing up and the other climbing down by the same route. If their watches are
adjusted before starting, of course, they will show exactly the same time where the
two Roberts meet on their ways.

The above idea can be summarized in mathematics as the following theorem:

INTERMEDIATE VALUE Turorem. If fis continuous on [a, b] and N is any number
between f(a) and f(b), then there exists at least one x,, between a and b such that

f(xy)=N.

This is one of the most fundamental theorems in calculus. Although it is very
simple and ordinary, people still pay great attention to it and use it as a test question.
For example, the following question is often asked: Prove

Prorosrition 2.1. Let f be continuous on [a, bl. If the range of f contains [a, b], then
equation

f(x)=x
has at least one solution in [a, b].

The solution is straightforward. Since the range of f contains [a, b], there must be
some x,, x, € [a, b] such that (see Ficure 1)

f(x))<a<z,  f(x)>b>x,

Let g(x) =f(x) — x. The result follows from applying the intermediate value theorem
with N =0. '

By the way, if the assumption “the range of f contains [a, b]” is replaced by “the
range of f is contained in [a, b],” Proposition 2.1 is still valid (see Ficure 2).

A point x, satisfying equation (2.1) is called a fixed point. A natural generalization
of fixed point is periodic point.

Assume R{f} c D{f}, the range of f is contained in the domain of f. Denote
o) =x, f1x) =f(x), £2(x)=f(fx), £3x) =f(f2@),..., 1) =f(f"" D).

If x, satisfies

Fr(xo) =2
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then x, is called an n-periodic point with period n. Clearly, a fixed point is a
1-periodic point.

If x, is an n-periodic point of f, then x,, f(x,),..., f" *(x,) are distinct and the
set {xg, f(x0), ..., f" " 1(xy)} is called a periodic orbit of f.

If f has an n-periodic point, we say that f has period n.

The existence of a fixed point of a function is generally clear by the inspection of its
graph. But the existence of an n-periodic point is not so easy to see even if n is a
small integer. As an example, let us consider the function

1
0<x<§
¥(x) = 1 (2.2)
§<x<1,

whose graph is in FIGure 3.
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As you can see, $(0) =5, ¥2(0) =y¥(3) =1, ¥3(0) = ¢*(3) = Y(1) = 0; that is ¢
has a 3-periodic point 0. Does it have a 5-periodic point? A 7-periodic point? It is
hard to ascertain this by just looking at the graph. We need to do some deeper
analysis.

The following is a generalized version of the Intermediate Value Theorem.

Prorosrrion 2.2. Let f be continuous on [a, b], and let 1, 1,,...,1,_, be closed
subintervals of [a,b]. If

f(lk)31k+1’ k=0,1,...,n—2,

f(1,-) 21, (2:3)
then, the equation
fr(x)=x (2:4)
has at least one solution x = x, € 1, such that
ffxy)ern, k=0,1,....,n—1. (2.5)

In the proposition, f(I;) DI, , | means that the range of f on I, contains I; ,,. We
will use the notation

-1, or I« (2.6)

i J J ¢

if f(I,)21; (f(I,) “covers” I,). The condition (2.3) can be written as
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L1, ->1,> - —=1I,_,—1I,.

Clearly, if n =1, Proposition 2.2 is reduced to Proposition 2.1.

The proof of Proposition 2.2 is based on the following fact:

If I, = I,, then there exists a subinterval I} C I, such that f(I}) = I,.

This is true, since if I, = [c, d], there exist x, and x, in I, such that f(x,) = ¢ and
f(x,)=d. Let I =[x,,x,]. Then I} CI,, and by the intermediate value theorem,
Iy =1,.

This fact implies that there exist I*_, C1,_, such that f(I*_)) =1, I*_,CI,_,
such that f(I*_,)=1I*_,,..., and I¥ CI, such that f(I¥)=1If. In other words,
there exist I;f C I, such that

FIF)=1F, , Cl,, fork=0,1,....n—2
and . (2.7)
f(ln—l) =IODI(>)k'

From (2.7), f*(I}) =1}, for k=0,1,...,n— 2, and f"(I¥) D I}}. Thus, by Proposi-
tion 2.1, equation (2.4) has a solution x, € I C I, such that (2.5) holds.

Note: In geometry, (2.5) means that mapped successively by f, x, visits
I,1,,...,1,_, and finally comes back to where it was.

Proposition 2.2 itself is not a remarkable result. But it is the only calculus we need
for the proof of our main result.

Proposition 2.3. Let f: I =1 be continuous, and let f have a (2n + 1)-periodic
orbit {x; =f*(x,),k=0,1,...,2n}, but no (2m + 1)-periodic orbit for 1 <m <n.
Suppose x, is in the middle of all the x;'s. Then one of the two permutations

(1) x:Zn <x2n—2 < e <x2 <1‘0 <.\'1 < e <x2n—3 <x2n—l
(2.8)
(i) xg, 1 <xg,_3< o <a;<xp<ay, < -0 <xy,_p <Xy,

is valid. (FiGure 4 is for the case n = 3).

x5 x5 xIsz E g

FIGURE 4

Proof. Suppose n > 1. Reorder {x,,i=0,1,...,2n} as {z,,i=1,2,...,2n + 1} such
that
23 <2y < 0 <Zgpin
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Let Sy, be the set {z;, k <i <I}. Assume
min{f(z): z € S} =z;
max{f(z): z € Sy} =z,
and define the set function f* as
F*(Sw) = Si;- (2.9)

We use the notation S, = S, to denote f*(S;;) DS,;. Our proof is based on the
following claim:
There exist

(i) positive integers m,l (m,l <2n + 1),

(ii) a family of sets S, = Sk, (i=12,...,2n) such that

ij

$1=A{zm>Zms1}s Son = {21,215},
S; has only one common point with S, ;, and

5,2 8;—= 1 =85, 25,

(2.10)
51C8,C - C8y1 DSy,

In fact, since f(z,) >z, and f(z,,,,) <Z,,,, Wwe can choose the largest i, say m,
such that f(z,,) > z,,. Clearly, m < 2n.

Let Sy ={z,,, 2ns1b So=f*(S1),...,S; 1 =f*(S,), ... . Since x,, is not a 2-periodic
point, we have

$;412S;,,i=1,2,3,..., and

S; 2 S,,, if S, is not the set {z,2,,...,%5,41}-

Suppose that i =1,2,...,t— 1. If ¢t=2n, then (2.10) is valid. We only need to
prove that t =2n.

Since the number of points in S,,, ={z,,...,z,} differs from that in S,,, 5,1 =
{20415+ ++>%an 1), there exists [ #m such that f(z;) and f(z,,,) are on different
sides of [z,,, 2,, 1) Thus, [z, 2;, 1= [2,,, 24 1]

Let S, be {z;,2;,,}. Here t — 1 is chosen as the smallest i such that S, = {2}, 2z, ,}.
This is possible because S, S, CS,C ....

As an illustration, in the first case of Ficure 5, S, ={z,,,2,,.1) = {2425}, S, =
{23,250, S3=125,26), Sy={z0,26}, Ss={zp. 27}, S, ={2,,2,,) ={z1,2,), S, =
{21, 29, 23,25}, and S, 5,41 = {25, 26, 27).

FIGURE 5
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Assume that I, is the smallest closed interval that contains S,. Then
Lclc - <l 21,
(2.11)

L->1,—> - >, -1,

Since S,_, 2 S,=1{z;,2,,,}, and S,_, contains at least ¢ points, we have t < 2n.
Assume that t<2n. Let Jo=Ji= " Jou_o 1 =1y Jone =Ip Jonors1 =I5
Jon—s=1,. We have

Jo=>h—=l—=  Jen—2 ™ Jo- (2.12)

By Proposition 2.2, there exists x§ € J;, such that

F2xg) =5
and (2.13)
f"(x?,‘)e]k for k=0,1,...,2n — 2.

It is easy to see that x¥, f(x¥),..., f>""2(x¥) are distinct. For otherwise, the
period of x is less than 2n — 1, and consequently f2"~2(x¥) would then be equal to
one of xy, f(x¥),..., f2"3(x¥). Then by (2.13)

f2n—2(xg<) 6]001211—2=Ilmlt' (214)

That is impossible because, by the construction of I;, I, N1, is empty for ¢ > 2. Thus,
t=2n, and S, ;\S; is a singleton for each i =1,2,...2n — 2.

For Proposition 2.3, it is sufficient to show that for each i=1,2,...2n—1, f
always maps one end point of S;, say A, to the other, say B, and A is always between
B and f(B). Let S,\'S;,_, ={A}}. If it is not the case for some k < 2n, then we have

A, ALl S [A_ LA ] (2.15)

(See Ficure 6).
Clearly, these two cases will lead to the fact that f has period 3 by Proposition 2.2.
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FIGURE 6
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3. Period Three and Chaos

The famous Li-Yorke theorem is the following:

Treorem 3.1, Let f be continuous on [a, b], its range contained in [a, b]. If f has a
3-periodic point, then f has n-periodic points for all positive integers n.

Proof. Let x,<x,<x, be a 3-periodic orbit of f. Then either f(x,)=x, or
f(xy) = x,. Without loss of generality, suppose f(x,) =x,. Then f(x,) =x,, f(x,) =
x,. Let I, =[x,,x,], I, =[x,,x,] By the intermediate value theorem

Ciysi,. (3.1)
Let
Iy=I,= - I;z—2=1~0
) (3.2)
In—l =Il'

Proposition 2.2 implies there exists x € I, such that f"(x})=x¥ and
gy el k=01,..,n-2
frU(a8) €1

By the same argument as for (2.14), if x¥, f(x¥),... , £ (x¥) is not an n-periodic
point of f, then f"~'(x¥) would be one of f*(xi¥), k=0,1,...,n — 2. Thus,

(3.3)

friad) elynd=x,
and
xg =f"(x5) =x,

F(x5) =f(xg) =x, & fo,

which is a contradiction to f(x¥) € I,,.
The proof of Theorem 3.1 is completed.

Theorem 3.1 tells us that the function whose graph is shown in Ficure 3 has
period n for each n. It is beyond one’s imagination that such a simple function is such
a complicated phenomenon.

In [2] the new concept “chaos” was first introduced. The meaning of chaos in
mathematics is that if f has a 3-periodic point in I then there exists an uncountable
set SCI such that for any two points x,,y, €S, the distance between the two
iterative series x, =f"™(x,), y, =f"(yo), n =1,2..., has the property that, as n — o,
the limit inferior equals zero while the limit superior is greater than zero.

Clearly the points in S have very interesting properties under successive mapping
by f. That the limit inferior equals zero means that there are infinitely many n such
that {f"(x)} and { f(y)} are as close as you like, and that the limit superior is greater
than zero means that there are infinitely many n such that the distance between
{f™(x)} and { f"(y)} is always positive. In other words, under the successive iteration
of f, different points of S are sometimes close, sometimes separated, and none of
them is periodic.
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4. Sarkovskii’'s Theorem

The order of natural numbers is
1,2,3,4,5,....
But not many people know that they can also be reordered as the following:
3,5,7,...,2:3,2:5,2-7,...,22-3,2%2-5 22-7 ...,16,8,4,2,1. (4.1)

That is, first list all odd numbers except 1, followed by 2 times the odds, 22 times the
odds, 23 times the odds, etc. This exhausts all the natural numbers with the exception
of the powers of two that are listed at the end in decreasing order. The number 1 is
last.

The ordering (4.1) is now known as Sarkovskii’s ordering of natural numbers, and
is denoted as

345474 -+ 492:342-542-7<4 - «
42
22.3422:5422-74 - 41648414241, (4.2)

Is there any application of Sarkovskii’s ordering? Let us consider the following
theorem.

Tueorem 4.1 (Sarkovskii, 1964). Let f: I — I be continuous and let f have an
l-periodic point. If | <m, then f has an m-periodic point, too.

Here, I can be any interval, finite or infinite, open or closed, semi-open or
semi-closed. This theorem tells us that the periods of a continuous function show a
wonderful regularity. Before proving the theorem, we make several remarks:

1. If f has a periodic point whose period is not a power of two, then f must have
infinitely many periodic points. Conversely, if f has only finitely many periodic
points, then each period must be a power of two. Here, the number 1 is considered
as 2°. :

2. Period 3 is the least period in the Sarkovskii ordering and therefore implies the
existence of all other periods as we saw in Theorem 3.1.

3. The converse of Sarkovskii’s Theorem is also true. There exist functions that have
p-periodic points and no “higher” periodic points in the sense of Sarkovskii's
ordering.

Proof of Theorem 4.1.

Case 1. If f has period 2™, then f has period 2! for each I < m.

We just need to prove that period 2" implies period 2™~ !

If m =1, then f has a 2-periodic point. Let x,, x, (x, <x,) be a 2-periodic orbit of
f-Thatis, f(x,)=x,, f(x,) =x, or f([x},x,]) D[x,,x,] By Proposition 2.1, f has a
fixed point (i.e. 2°-periodic point).

Suppose the conclusion is valid for m =k. We want to show it is also valid for
m=k+ 1

Let g =12 Then f has period 2¥*! implies that g has period 2¥. Now by the
induction hypothesis, g has period 2¢~'. That is, there exists an x, € I such that

k—1
82 (x0) =x.
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gi(xy) #x, fort=1,2,... 21
which is equivalent to
k
2 (%) =2,
f¥(xy) #x, fort=1,2,...,2k1

Suppose that x, is not a 2X-periodic point of f. Then there must be some
s€{1,3,5,...,2F — 1} such that

fi(xy) =x,.
But, it is impossible because this implies that
fzsa(xo) =Xy
for some s,<€{1,2,3,...,2571 —1}.
Therefore, the induction completes the proof.

Case 2. If f has period 2m + 1, (m > 1), then f has period k for all k > 2m + 1.
By Proposition 2.3, letting I, =[xy, x;), I, =[x, x0) ..., 11 =[x5,_5.%5,_1]),
I,, =[x,,,%5,_,], we have the following diagram (Ficure 7)

FIGURE 7

and
CII_)I2—)18—)14—)15_) —)12111—1—)12111'

4.3)

Suppose there is no (2n + 1)-periodic point for 1 <n <m. Then, for k > 2m + 1
11_>11_)”._>11_)12_).'.12m_)11‘ (44)

k—(2m—1)
Since there is no common point in I, and I,,_; Proposition 2.2 will result in f
having a k-periodic point.

Case 3. If f has period 2m + 1, m > 1, then f has period 2k for any positive

integer k.
We only need to prove the case where 2k < 2m. From (4.3), we have
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IZ(m—k)+1 - I2(m—k)+2 - 12m - 12(m—k)+1'
By the same argument as in case 2, f has a 2k-periodic point.

Case 4. Let m <n, where m = 2%p, n=2'q, p,q are odd numbers, p > 1, k > 1.
Then period m implies period n. Without loss of generality, suppose that for [ <m
there is no [-periodic point of f.

According to the Sarkovskii ordering, we need to consider the following possibili-
ties:

(i) t>k,g>1, and
(i) t=k,g>p.

Let g(x) =f2k(x). Then f has period 2%p implies g has period p.

By Case 3, g has period 2¢%g for ¢ > k and q > 1. Therefore f has period 2'q for
t>k, g =1, and (i) is valid.

By Case 2, g having period p implies that g has period g. Then f has period 2q,
and (ii) is valid.

The proof of Theorem 4.1 is complete.

The following example shows that period 5 does not imply period 3.
Let f be the piecewise linear function defined on [1,5] with f(1) =3, f(2) =5,
f(3) =4, f(4)=2and f(5) = 1, whose graph is shown in Ficure 8.
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FIGURE 8

It is easy to check that
(i) 10/3 is a fixed (or 1-periodic) point;
(i) 5/3 is a 2-periodic point;
(iii) 1,2,3,4,5 are 5-periodic points.
We can also prove that f has no 3-periodic point. Since

f1n.2]=12,5], £7[2,3] = [3,5], f°[4,5] = [1.4],

£ has no periodic point in any of these intervals. Also, since f[3,4] =[1,5] and f3
is monotonically decreasing on [3, 4], there exists a unique x, €[3,4] such that

f3(x0) =Xy
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Since f(x)=10—2x on [3,4], f(x) has a unique fixed point ¥ =10/3 on [3, 4].
Since,

f2(@) =f3(5) =f(x) =X =x,,

x, is not a 3-periodic point. Hence, f has no 3-periodic point.

5. Conclusion and Discussion

Sarkovskii’s theorem has not ended the discussion of the periodic orbits of continuous
functions. On the contrary, it created a new direction for studying the problem. Many
articles and books have been appearing. The question is why so many great classical
analysts didn’t discover such an important theorem. The reason is that the classical
analysts concentrated on the local properties of functions. Essentially, continuity,
differentiability, and integrability are determined by the local properties of functions.
Although some global properties such as uniform continuity had been obtained, these
global properties can be derived simply from the local properties.

A remarkable advance in modern analysis is viewing the situation as a whole in the
study of functions. Actually, the concepts such as iteration and periodic orbits have
inseparable relations to the global properties. For example, f(x) can be iterated on
[a, b] but may not be iterated on any subinterval of [a, b].

Studying the global properties of functions or mappings now forms a new branch of
mathematics called global analysis, which includes differential dynamical systems,
global differential geometry, qualitative theory of differential equations, differential
topology, etc. It is one of the main directions in modern mathematics.

Now we use another example to show that even in fundamental problems one can
benefit from taking into account the global structure.

Example. Monkeys’ Apples

There was a pile of apples on the beach that belonged to five monkeys and was to
be distributed equally among them. The first monkey came and waited for a while but
no others followed. He divided those apples into five piles each of which had the
same number of apples. But one was left and he threw it into the sea and went away
with his own pile of apples. The second monkey came and divided the rest of the
apples into five piles equally, too. Again, one was left and was thrown into the sea.
Then he went away with his own apples, too. Later, one by one, each monkey did the
same as the first two did.

What is the least number of apples on the beach in the beginning? What is the
least number of apples left after all the monkeys take away theirs?

The problem is not easy to solve if you use the usual equations. So the famous
physicist Dirac suggested doing it as follows.

Let N be the number of apples in the beginning, and A, A,,A;,A,, A5 be
numbers of apples taken by the monkeys. Then, we will have a system of linear
equations

1 (5.1)

S
=
[
|
Ut
o>
~
Il
—
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which possesses a particular solution
(N A, Ay, Ay Ay A) = (=4, -1, -1, -1, -1, — 1). (5.2)

The corresponding homogenous equations of (5.1) have a general solution

(5(2—)4k,(%)4k,(—2—)3k,(%)2k,%k,k) (5.3)

where k is any constant. Therefore, the general solution of (5.1) is
5\ 5\* 5\ 5\° 5
(5(2) k —4,(2) k- 1,(1) k- 1,(2) k=1, 2k—1k- 1). (5.4)

From (5.4), we can determine that the least positive integer for N is 5° — 4 = 3121
when k = 4* = 256; and the number of apples left is 4A; = 4(k — 1) = 1020.

As you can see this solution is based on the structure of solutions of linear
equations. If you don’t know the theory, it is really hard to find it.

The method we used for this problem is fundamental and very simple. Suppose x
is the number of apples before a monkey came and y the number after he left.
Clearly, y is determined by x, say y = f(x), and

f(x) = 2 (x - 1). (55)

If there were N apples at first and M apples at last, then

M=f(f(f(f(f(N)))))=F3(N). (5.6)

Now, we consider how to get a formula for f3(x). We rewrite f(x) as

f(x) = g (x+4) — 4 (5.7)
where, as you can see, —4 is a fixed point of f(x).
Obviously,
£ = (5) v -4
£ = (5) (r+a) -4
it (5.8)
7 = (5) cray -4
5
£ = (5) o -4
and hence
M= (%)5(N+4) 4, (5.9)

In order to have a positive integer M, N + 4 must be a multiple of 5°. So the least
positive integer value of N is

N=5%—4=3121,

and consequently
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M = 4% — 4 = 1020.

Before ending the article, we mention again that the proof of Sarkovskii’s beautiful
theorem is far from advanced mathematics. This big surprise shows that people need
not have advanced knowledge to establish mathematics if, when opportunity arrives,
it is recognized.
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Proof without Words: The law of cosines via Ptolemy’s Theorem

a + 2b cos(w — 9)

cc=b-b+(a+2bcos(m—10))-a

c®=a%2+b%—2ab - cos b
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