ARTICLES

Connectivity and Smoke-Rings:
Green’s Second ldentity in
Its First Fifty Years

THOMAS ARCHIBALD
Acadia University,
Wolfville, Nova Scotia BOP 1X0

Introduction

James Clerk Maxwell, in his review of Thomson and Tait’s Treatise on Natural
Philosophy, noted an important innovation in the authors’ approach to mathematics:

The first thing which we observe in the arrangement of the work is the
prominence given to kinematics,... and the large space devoted under this
heading to what has been hitherto considered part of pure geometry. The
theory of curvature of lines and surfaces, for example, has long been
recognized as an important branch of geometry, but in treatises on motion it
was regarded as lying as much outside of the subject as the four rules of
arithmetic or the binomial theorem.

The guiding idea, however ... is that geometry itself is part of the science
of motion, and that it treats, not of the relations between figures already
existing in space, but of the process by which these figures are generated by
the motion of a point or a line. [1]

This “guiding idea,” which treats geometric entities as physical objects in some sense,
had been influential with mathematicians for many years. Countless mathematical
problems have their origin in the investigation of the natural world. However, it also
happens that the solutions of some problems may be facilitated by attributing physical
properties to the mathematical objects under study. In addition, mathematical con-
structs usually thought of as “purely geometric” may be created by considering such
mathematico-physical entities.

It is my purpose in this article to illustrate some aspects of the cross-fertilization of
mathematics and physics by examining the development of Green’s second identity
(known to physicists as Green’s theorem) and its generalizations over a fifty-year
period, from 1828 to 1878. During this period, despite an increased emphasis on
logical rigour in some circles, many mathematicians continued to accept physical
proofs of analytic theorems as valid. Such proofs used hypothetical physical properties
such as incompressibility to characterize the regions in space; this trend was found
most strongly in nineteenth-century British mathematics, though it was not unknown
elsewhere.

Green’s second identity, well known from vector calculus, states that
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[[[ (o -vw) dxdydz=56(q>% —4/%) da.

The integration on the left is performed over a region bounded by a closed surface S.
The integral on the right is then a surface integral over S, and n is an outward normal
to S. Finally, @ and ¢ are continuously differentiable real-valued functions (scalar
fields) on R®. This theorem first appeared in a paper by George Green published in
1828, along with a number of other lemmas which Green employed in his study of
electrostatics and magnetism. Green’s results remained virtually unknown, however,
until William Thomson (later Lord Kelvin) obtained two copies of Green’s pamphlet
in 1845. Green’s results subsequently became widely known, and were central to the
mathematical theory of potential, one of the most important tools of mathematical
physics in the following decades.

Potential theory had originated as a body of results which arose in connection with
the efforts of French mathematical physicists (notably Poisson, Laplace, and Biot), to
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extend the methods of Newton. Laplace attempted to explain many natural phenom-
ena as the result of forces proportional to the inverse square of the distance between
the interacting objects. To achieve this, it was necessary to determine the integrals of
vector forces. Laplace showed that such forces could be treated as what we now term
the gradient of a scalar function, and hence was able to simplify the calculations
greatly. Such a function, the gradient of which is a force, is known as a potential for
that force. (We will also see velocity potentials in the course of this article, which are
functions the gradient of which gives a velocity.) Like that of Laplace, Green’s work
was a contribution both to mathematical physics and to potential theory, since it
expresses relationships between potentials and their integrals as well as applying the
results to physical problems [2].
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At its beginning, the idea of potential was a mathematical convenience. However,
by the 1850s it had acquired physical interpretations. In particular, if a vector
function has a potential, the integral of that potential along a curve depends only on
the endpoints of the integration, and integrals around closed paths are zero. This
expresses the fact that the vector function is an exact differential. Physically, this
implies that the force described by the function is conservative, so that potential
functions are closely associated with potential energy.

Green’s 1828 Essay

Green’s paper, which was published privately in Nottingham in 1828, was called An
Essay on the Application of Mathematical Analysis to the Theories of Electricity and
Magnetism [3). George Green (1793-1841), a miller’s son, had been given access to
the library of a local aristocrat interested in science. This opportunity, and Green’s
ability, permitted him to master basic works by Laplace, Lagrange, and Poisson.
Inspired by Laplace’s work on gravitation and Poisson’s on electrostatics and mag-
netism, Green set forth to investigate electrostatics using similar hypotheses but new
methods.

Of particular interest to us are Green’s general mathematical theorems, presented at
the beginning of the paper, which he later applied to particular electrical and
magnetic calculations. Green’s second identity is the key theorem in this section. It is
the essential tool in solving the Laplace equation and the Poisson equation by the
method which Green introduced. A detailed discussion of this method, today known
as the method of Green’s functions, would take us too far afield.

In modern notation, the identity Green proved was

vasz3x+S6U% do = vasz3x+56Vg—Z do. (1)

Here U and V are any two functions which are continuously differentiable in the
region of differentiation, and n is now the inward normal from the surface o. Green
used the symbol 8 to express what we have denoted by v 2 Green’s proof of this
identity rests on applying integration by parts to the expression

/ff{av v . 3;’ gg+g‘z].‘zlz]}dxdydz_f(vvy(vU). 2)

Assuming U,V are sufficiently differentiable, we can integrate by parts in each
variable. For example let

au av
—a—dx and o=-ﬂdx‘

Then substitution in (2) yields
o 2540 )
= f/V(xl)‘fl—i]‘F dydz—/fV(xo)?i—i]‘ dydz — fV 5 dxdydz.

Green then argued that, if ¢ is a surface element and n an inward normal, we have
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dUu dUu
ffdydz(V(xl)EL - V(xO)E; ) ) fdcr 8anx .

Hence the partial integral becomes

fdydz( %%dx)=_fd0-g% fV32U

Consequently the result of integration with respect to all three variables gives

[[dxdydz(vv)-(vU) =~ fdav - [vveu. (3)

This is often known as Green’s first identity. By symmetry, we may interchange U and
V in (3) to obtain the second identity:

fdaV——vazU— fd U fvsz

Many present-day niceties in the proof of this identity were not considered by Green.
A full proof involves dealing properly with the relationship between the infinitesimals
and the finite, and we must use the equivalence of multiple and interated integrals,
which Green did not distinguish. The advances in rigorous analysis due to Cauchy
may well have been unknown to Green at this time, since he mentions his limited
access to the latest work. Instead his arguments rely on the geometry of infinitesimals.
In this, his work resembles that of most of his contemporaries, even in France.

Green’s work went almost entirely unnoticed for many years. None of the private
subscribers who purchased the pamphlet appears to have been capable of appreciat-
ing its worth, and his results and methods remained little known [4]. Green’s work
might have been forgotten had it not been mentioned by the Irish electrician Robert
Murphy. Murphy referred to Green as the originator of the term potential, though
Murphy’s own definition of potential was erroneous, indicating that he had not
actually seen Green’s work [5].

Green himself did not revive interest in his earlier work. His efforts in the interim
were devoted to further research, and to an education at Cambridge. His other papers
met a happier immediate reception; several were published in the Transactions of the
Cambridge Philosophical Society, where they attracted the interest of the British
scientific community. Green thus made a name for himself before his'death in 1841,
though his reputation was considerably enhanced by the rediscovery of the 1828
Essay.

Thomson Rediscovers Green

It was William Thomson (later Lord Kelvin) who first drew the attention of the
international scientific world to Green’s results. Sometime in 1842 Thomson had read
a reference by Murphy to Green’s paper; his interest was piqued for several reasons.
Thomson was himself then engaged in research on the theory of attraction, and
published papers on the subject in 1842 and 1843. Murphy had referred to Green’s
use of the term potential, a notion which, as Thomson states, was also employed by
Gauss with great success in his 1839 paper on inverse-square forces. Thomson
doubtless wondered how Green, whose name he knew well, had employed the notion
of potential, and was curious about the exact nature of his results.
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Thomson was unable to see a copy of Green’s work until January 25, 1845, shortly
before he was about to embark on a trip to France following the completion of his
studies at Cambridge. By chance, Thomson’s tutor, Hopkins, had two copies which he
had apparently never examined, and sent them with Thomson. Thomson was very
impressed with the generality of Green’s results, and was soon endeavouring to apply
them in his own research. On his arrival in France, Thomson showed the paper to
Liouville, Sturm, and Chasles, among others. Soon the Paris mathematical community
was well aware of Green’s work: for example, Liouville gave Green and Gauss equal
credit for the introduction of the term potential in an 1847 paper [6]. Thomson sent
the other copy of Green’s paper to Germany with Cayley, who delivered it to August
Crelle, editor of the Journal fiir die reine und angewandte Mathematik. Crelle
published a translation of Green’s paper in three installments between 1850 and 1854,
hence it became well known to interested researchers in Germany. Thus, 25 years
after Green’s original publication, his methods began to find their way into the
scientific literature and textbooks of Europe [7]. One of the first to make use of
Green’s work was Bernhard Riemann (1826-1866), who was then writing his doctoral
dissertation at Gottingen.

Riemann and Multiply-Connected Regions

Riemann’s principal interest in Green’s work was in the method of Green’s functions,
which Green had used to solve boundary-value problems involving functions satisfying
Laplace’s equation

V2% =0.

Here o is to be interpreted as the potential function of the electrostatic force due to a
charge density on a conductor. Riemann, however, noticed that Green’s methods
could be useful in the study of functions of a complex variable, since the real and
complex parts of such functions must satisfy Laplace’s equation. Employing this
insight, Riemann developed methods that enabled him to specify a complex function
by its boundary values and discontinuities. In so doing, Riemann presented the idea of
multiply-connected regions of the plane: a region is simply connected if a cross-cut
divides it in two, and has connectivity equal to the number of cuts taken to separate
it. (See Ficure 1.) This notion was published in Riemann’s dissertation (1851) and
found wider circulation with the appearance of his paper on abelian integrals (1857)
[8]. It was here that it was seen by Hermann von Helmholtz, who was attempting to
employ Green’s ideas in a different way.

Zweifach zusammenhlingende Fliiche.

Sie wird durch jeden sio
nicht zerstickelnden Querschnitt
¢ in eine einfach zusammen-
héngende zerschnitten. Mit Zu-
ziehung der Curve a kann in ibr
jede geschlossene. Curve die
ganze Begrenzung eines Theils
der Fliche bilden.

FIGURE 1.

Riemann’s illustration of a doubly connected surface. (From B. Riemann, Gesammelte Math.
Werke, 2nd edition, Leipzig, Teubner, 1892.)
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Helmholtz and Vortices

Hermann von Helmholtz’s 1858 paper On Integrals of Hydrodynamic Equations
Which Yield Vortex Motion was also deeply influenced by Green’s work [9]. Helmholtz
(1821-1894) had become interested in the solution of boundary-value problems in
fluid mechanics in connection with his investigation of the physiology of the ear. (He
was at that time a professor of anatomy in Bonn [10].) Furthermore, Helmholtz saw a
parallel between certain problems in hydrodynamics and problems in electromagnetic
theory, a longstanding interest of his. Attempts to provide a detailed theoretical
treatment of the analogy between electromagnetic theory and fluid dynamics may
have been sparked by the superficial resemblance between electrical and hydrodynam-
ical phenomena. The electric current was widely viewed in the mid-nineteenth
century as the flow of one or two “electric fluids” along a conductor. The motion of
this fluid produces a magnetic effect. André-Marie Ampére demonstrated in the 1820s
that magnetism may be explained as the result of hypothetical microscopic electric
currents in a body, and hence the existence of the electromagnetic phenomenon
should mean that a current gives rise to other currents. If the original current flows in
a straight line, the currents responsible for magnetic effects must be helical, forming
microscopic vortices.

The researches of Helmholtz and others in this area aimed to make this rather
vague picture precise. In the 1858 paper, Helmholtz examined the following question:
suppose we are given a closed container filled with a frictionless incompressible fluid.
How does action on the boundary of the container affect the motion inside?

Helmbholtz apparently saw the value of Green’s theorems in such an investigation
soon after reading Green’s paper, but was kept from working out his ideas because of
other academic obligations. However, Helmholtz had also recently read Riemann’s
paper of 1857, which made it clear to him that Green’s theorem could only be used
when the regions involved were simply connected. This is because functions with
potentials—what we would now term conservative vector fields—may in fact be
multiple-valued in multiply-connected regions.

Let us discuss how Helmholtz used Green’s theorem. He began with Euler’s
equation of fluid dynamics, which we may write in vector notation as

1 J ~
F=;Vp+(m+D’V)D, (4)
v -o=0. (5)

Here p is the density of the fluid, p the pressure, v the velocity. Helmholtz supposed
that

F=vV (whereV is a force-potential)
and

o=ve (o is a velocity-potential).

From (5) we have that ¢ satisfies Laplace’s equation, since V - © = v %p = 0. Helmholtz
then noted that this implies

VvV Xo=V X (ve)=0.
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If the walls of the container are rigid, this means that the component of velocity
perpendicular to the boundary is zero. Hence, if n is an outward normal, d¢/dn is
equal to zero everywhere. But by Green’s first identity,

L(VU'VV)dx3=ffV%%]ds—fRszde‘"‘.
If U= V= ¢ we have

[(vo) = ffqog%) ds=0,  (Remember v’p=0.)
R

so that Vo = 0, i.e., no motion is induced in the fluid. Hence, any motion of a fluid in
a closed vessel (with simply-connected interior) which has a velocity potential must
depend exclusively on a motion of the boundary. Helmholtz went on to show that a
motion of the boundary uniquely determines such a motion in the fluid. A further
important conclusion stated that vortices can only be produced by a motion which has
no velocity potential. More important still, if vortices do exist initially, they are stable
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under the action of conservative forces. Either they must be closed tubes, or else they
extend from the boundary to the boundary.

When vortices do exist one can consider the portion of fluid without vortices as a
multiply-connected region, the vortices being the “holes.” Thus to solve boundary
value problems in such a region, one would ideally have an extension of Green’s
theorem to deal with such cases. Helmholtz stressed the desirability of such a
generalization, and noted that Riemann’s notion of connectivity could readily be
extended to three dimensions for this purpose.

In Helmholtz’s work the geometric entities immediately become physical. For one
thing, they are three dimensional. Also the points of space become associated with the
molecules of a fluid, and holes in the space correspond to vortices. In this instance, the
geometric entities may be given clear physical interpretation, and physical questions
(the solution of specific boundary-value problems, for example) dictate the mathemati-
cal problems which are important.

Helmboltz’s research was received with greater sympathy by British mathematical
physicists, especially Thomson, than by his German colleagues. This occurred in part
because of the shared interests of Helmholtz and Thomson in hydrodynamic models
for electromagnetic theory, an interest that arose because of their attitude toward the
then-prevailing thought on electromagnetic theory in Germany. This theory, based on
work by Gauss’s collaborator Wilhelm Weber, explained electrical phenomena on the
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basis of a velocity-dependent force law. Both Helmholtz and Thomson felt that such a
force could not satisfy the energy conservation principle. Helmholtz apparently felt as
well that his mathematical skills were dimly regarded by his German contemporaries,
because he had not been formally trained as a mathematician. Thus it was among
British mathematical physicists that Helmholtz’s papers were read with greatest
interest and understanding.

Tait, Thomson, Smoke-Rings and Atoms

Helmbholtz’s approach found an enthusiastic admirer in Peter Guthrie Tait
(1837-1901), a Cambridge-educated Scot who was teaching in Belfast in 1858. Tait
was attempting at that time to master William Rowan Hamilton’s method of quater-
nions, and to demonstrate the physical usefulness of the method by obtaining
significant applications. In this respect Helmholtz’s work interested him, and he made
an English translation for his own use [11].

A parenthetic note about quaternions: Nowadays, this set of objects is most likely to
show up in algebra courses or proofs in algebraic number theory which can make use
of its properties as a noncommutative division ring. This is quite remote from their
original intended use in geometry and analysis. Hamilton invented quaternions in
1843, and introduced with them the idea of operators. Particularly important was the
del or nabla operator, our V. For Hamilton and Tait, a quaternion described a
quotient of what we would term vectors; such a quotient consists of a 4-tuple which
describes the stretch and the three rotations which bring an arbitrary pair of vectors
into coincidence [12]. Later on we shall see how Tait used this approach to obtain
what he called “physical proofs” of analytic statements.

Tait moved to Edinburgh in 1860, where he began a collaboration with William
Thomson, then at Glasgow. In 1866 and 1867 their collaboration was at its peak, as
they prepared their Treatise on Natural Philosophy (which was to become the
standard introductory physics text in Britain for decades). Early in 1867, Tait showed
Thomson an experimental dembnstration of the stability properties of vortices by
means of smoke-rings, as well as Helmholtz’s mathematical treatment of the problem.
Thomson described this event to Helmholtz in a letter:

Just now, however, vortex motions have displaced everything else, since a few
days ago Tait showed me in Edinburgh a magnificent way of producing
them. Take one side (or a lid) off a box (any old packing box will serve) and
cut a large hole in the opposite side. Stop the open side AB loosely with a
piece of cloth, and strike the middle of the cloth with your hand. If you leave
anything smoking in the box, you will see a magnificent ring shot out by
every blow.

Thomson then went on to describe what he found particularly interesting about the
phenomenon and the theory.

The absolute permanence of the rotation, and the unchangeable relation you
have proved between it and the portion of the fluid once acquiring such
motion in a perfect fluid, shows that if there is a perfect fluid all through
space, constituting the substance of all matter, a vortex-ring would be as
permanent as the solid hard atoms assumed by Lucretius and his followers
(and predecessors) to account for the permanent properties of bodies. .. thus
if two vortex rings were once created in a perfect fluid, passing through one
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another like links of a chain, they could never come into collision, or break
one another, they would form an indestructible atom. [13]

Thomson embarked on the mathematical theory of these apparently indestructible
vortex atoms at once, and his results were read before the Royal Society of Edinburgh
a little over three weeks later. His paper On Vortex Motion, much augmented,
appeared in 1878 [14]. Here he encountered and solved the problem posed by
Helmbholtz of extending Green’s theorem to multiply-connected regions. For in order
to investigate the properties of vortex atoms, it was necessary to solve boundary value
problems where complicated vortices (such as those pictured) formed part of the
boundary. (See Ficure 2.)
In this paper, Thomson wrote the original version of Green’s theorem thus:

_/Rv(p~V<p’dV=¢(p%% da — j;q)vzq)’dV

—¢q) da—/(pv pdV.

Here ¢ and ¢’ must be single-valued. Thomson then investigated what happens if ¢’
is multivalued, that is to say, if we consider R to be a multiply-connected region, and
then considered how to set the problem up in general. A multiply-connected space
can be made simply connected by making cuts, or by inserting what Thomson calls
stopping barriers. The integral around an (almost) closed path from one side of the
barrier to the other has a constant value k;, which is the same for all such paths; such
constants k; exist for all stopping barriers and the integral in question becomes

fvw v dV = ¢<p——do+2kff " do’ —fqov 'dv
—¢q) aq)d +Zk ffaq) do’ — thp’V%dV.

Here do’ represents a surface element of the barrier surface.
Thus armed, Thomson was able to examine fluid motion in multiply-connected
regions, concluding that the normal component of velocity of a fluid at every point of

FIGURE 2.

William Thomson’s Knots. (From W. Thoméon, On vortex motion, Trans. Royal Soc. Edin-
burgh, 25, 1869.)
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the boundary determines the motion inside a multiply-connected region (provided we
know the circulation of the fluid in each region). He then considered how best to
define the order of connectivity, noting that for some of the surfaces shown the
stopping barriers must be self-intersecting and difficult to distinguish. He therefore
proposed a definition using what he called “irreconcilable paths” —which we would
now call homotopy classes of closed paths with base point. He selected a point on the
surface, and noted that the connectivity of the surface is determined if we see how
many mutually irreconcilable paths can be drawn on its surface. For a simply-con-
nected region, for example, all closed paths on the surface are homotopic. Although
this affords an unambiguous definition of connectivity, it is not easily possible using
this method to get the generalization of Green’s theorem. For that the stopping
barriers are required.

Thomson’s interest in vortex atoms thus led him directly to a generalization of
Green’s theorem, and to the question of the proper definition of connectivity. His
proof technique is in essence the same as that of Green, augmented by the stopping
barriers, and it is this method that is usually taught today in courses on vector
calculus.

Tait’s Quaternion Version of Green’s Theorem

By the late 1860’s, Tait’s interest in quaternions had turned into a crusade. To the
British association in 1871, he said:

comparing a Cartesian investigation...with the equivalent quaternion
one...one can hardly help making the remark that they contrast even more
strongly than the decimal notation with the binary scale or with the old
Greek arithmetic, or than the well-ordered subdivision of the metrical system
with the preposterous non-systems of Great Britain.

In the same address, Tait pointed out that from the quaternion point of view:

Green’s celebrated theorem is at once seen to be merely the well-known
equation of continuity expressed for a heterogeneous fluid, whose density at
every point is proportional to one electric potential, and its displacement or
velocity proportional to and in the direction of the electric force due to
another potential. [15]

Let us see exactly what he means. In his 1870 paper On Green’s and Other Allied
Theorems, Tait supposed a spatial region R to be uniformly filled with points [16]. If
points inside and outside the regions are displaced by a vector then we may have a
net decrease or increase of the volume—that is, of the number of points—in the
region R. This can be calculated in two ways:

1. We can find the total increase in density throughout R

f divedV (in Tait’s notation f/S Vo ds) (6)
R

2. We can estimate the excess of those that pass inwards through the surface over
those that pass outwards:

ffo-ﬁda (in Tait’s notation ffsw!UVds). (7)
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The expressions (6) and (7) must be equal, yielding what we now call the divergence
theorem from the equation of continuity. If we consider that the density—for
example, of electric fluid— is given by a potential P,, and the displacement is
proportional to a force o with potential P, then we have:

v(PP,) =PVP, + PVP
and

v PP,) =PV 2P, + PV ?P+2(VP-VP). (8)

But by the divergence theorem
[wpp)av= [ div(vPP)dv=[ (vPP,)-fida
R R IR

- [ (PvP,+PyP)-ida.
JR

Hence from (8)
f (PYP,+ Py P)-iida= f(Pvalv 2p) AV + 2fvP-vP1dV.
IR R R
But the left side here, by the divergence theorem, is
= f(Pval—Plva) av.
R

Combining these two yields Green’s theorem in the form

JaP
. V=— 2p + ——
fR(vP vP)d fRPlv P aRPa da

JP
=— [Pv?P, + [ P=2da.
fR Vo Jyg dn

Notice that the argument depends on treating geometric points as mobile physical
entities, with continuity properties like those of a fluid.

We find Tait’s views nicely summarized in his 1892 review of Poincaré’s Thermody-
namique:

Some forty years ago, in a certain mathematical circle at Cambridge, men
were wont to deplore the necessity of introducing words at all in a
physico-mathematical textbook: the unattainable, though closely approach-
able Ideal being regarded as a world devoid of aught but formulae! But one
learns something in forty years, and accordingly the surviving members of
that circle now take a very different view of the matter. They have been
taught alike by experience and by example to regard mathematics, so far at
least as physical enquiries are concerned, as a mere auxiliary to thought. .. this
is one of the great truths which were enforced by Faraday’s splendid career.
(17]
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Conclusion

Our excursion from Green to Tait has taken us from electrostatics and potential
theory, via complex analysis and fluid dynamics, to homotopy classes of maps and
vector analysis. While I have only touched on a few of the interesting problems
associated with these developments, I hope that I have shown that physical thinking is
important, not only in posing mathematical problems, but also in solving them. In
particular, physical thinking may lead to the creation of certain mathematical notions,
such as connectivity, which are of interest in their own right, for example in the
classification of the knots described by Thomson. Tait undertook this classification
problem around 1870, achieving the first basic results of knot theory.
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