degrees. The maximal subgraphs with maximum degree 3 are much harder to characterize than
those with maximum degree 2 which are unions of cycles together with at most one isolated point
or with at most one pair of connected points.
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Polya’s Geometric Picture of Complex Contour
Integrals

BarT BRADEN
Northern Kentucky University
Highland Heights, KY 41076

Complex contour integrals contain an element of mystery which has troubled me since my
student days. Churchill and Brown [1] express the problem succinctly: “Definite integrals in
calculus can be interpreted as areas, and they have other interpretations as well. Except in special
cases, no corresponding helpful interpretation, geometric or physical, is available for integrals in
the complex plane.” In 1974, George Polya suggested a simple solution, but his idea does not
seem to be widely appreciated. Computer graphic techniques can be used to help students
visualize and estimate complex integrals once Polya’s approach is adopted.

In classical potential theory it has long been the custom to associate to a real harmonic
function u(x, y) a “complex potential” f(x +iy)=u(x,y)+iv(x,y), where v(x,y) is a
harmonic conjugate of u(x, y). Then the real and imaginary parts of f’(z) are the components of
the gradient field (u,(x, y), u,(x, y)) corresponding to the potential u(x, y). Polya’s idea was
simply this: to any complex function f(x + iy)=u(x, y) + iv(x, y), associate the plane vector
field f(x + iy) = (u(x, y), —v(x, y)), rather than the derived field f’( x + iy). In [2] it is shown
that complex integrals with integrand f(z) have a simple geometric and physical interpretation in
terms of the associated vector field f( x + iy). Our goal here is to spread this gospel, showing that
the vector field picture can be used to estimate specific contour integrals, and leading to new
insight into the theory of complex integration. An earlier paper [3] indicates the usefulness of the
vector field picture of complex functions (as an alternative to the traditional view of a function as
a mapping on the complex plane), in analyzing zeros and singular points of complex functions.

To emphasize the distinction between a complex function and its associated vector field, we
henceforth write W(z) or W(x, y) to denote the Polya vector field corresponding to a complex
function f(z). Thus if f(x +iy)=u(x, y) +iv(x, y) is the decomposition of f(z) into its real
and imaginary parts, then W(x, y) = (w;(x, y), wy(x, y)) with w; = u, w, = —o.

The integral of f over an oriented curve y can be expressed in terms of real integrals of the
components of W along y:

ff(z) a’z=f(u+iv)(dx+ia’y)=fua’x—va’y+i/ua’x+udy
Y ¥ Y ¥

=/ywldx+wzdy+i./;w,dv—wzdx=ny-Tds+iLW-Nds,
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where N is the normal vector obtained by turning the unit tangent vector T clockwise through
a /2. In words, the real part of f f(2) dz is the integral of the tangential component of the Polya
vector field W over y (the flow along v, if we picture W as a velocity field); and the imaginary
part of f f(z) dz is the integral of the normal component of W over y (the flux across y). An

immediatye payoff of this geometric interpretation is that it makes clear the fact that the value of a
contour integral is independent of the parametrization, and changes sign if the orientation of the
curve is reversed. .

Just as one can estimate a real integral / f(x) dx by interpreting it as the signed area between

the graph of f and the interval [a, b] on the x-axis, a complex integral / f(z) dz can be roughly

approximated by visually estimating the flow and flux of the Polya vector fleld W along the path.

In FIGURE 1, for example, the vector field W for the function f(z)=1/z is shown along the
unit circle. The vector W(z) is normal to the path at each point z, so the flow of W along the
contour is zero. The normal component of W is apparently constant, namely 1, so the flux of W
across the path is simply this constant times the length of the path, viz., 2. Thus our geometric

analysis has shown that / % dz =2mi.

FiGuURe 1. Pdlya vector field for f(z)=1/z on the unit circle.

The example just considered is of course very special; in general one can only estimate the
integrals of the tangential and normal components of W over y, from a plot of the vector field
along this path. To emphasize how closely the procedure for estimating complex integrals
parallels that for estimating real integrals, we ask the reader’s indulgence as we briefly recall the
latter.

To estimate / f(x) dx from a sketch of the graph of f over [a, b], of course, one estimates the
area between the graph and the x-axis, and subtracts the area below the axis from the area above.

In more detail, we might mentally form a partition a=x,<x; < --- <x,=b such that f(x)

does not change sign on each subinterval; then estimate each of the integrals f f (x) dx, and
Xk

add the resulting signed numbers. To estimate the area between the graph and the x-axis over

each subinterval [x,, x, , ], we estimate the mean height y, of the graph over this subinterval and

use the product y,(x,.; — x;) as our estimate of the area.
For example the mental process used in estimating / f(x) dx for the function graphed in

FIGURE 2 might go something like this: consider the partition 0 <2 <3 <5;

2 3 5 - _
fof(x)dxg(u)(z—o), fzf(x)dx=(—.1)(3—2), /3f(x)dx=(.7)(5 3),
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so f 5f (x)dx=22-.1+1.4=3.5.If an analytical evaluation produced a far different value for
0

this integral, say — 3, we would know an error had been made; the simplicity of the geometric
estimate makes it very convincing,.

2

1 2=—3 4 5
FIGURE 2

The vector field interpretation of complex integrals can be used in a similar way to provide a
simple estimate based on geometric intuition, which can then be used as a check against
analytical methods.

To estimate f f(z) dz, we must separately estimate its real part f W - Tds and its imaginary

part / W - N ds. To estimate f W - Tds, we first partition the curve into segments vy;, ¥,,..., ¥, on

Wthh W - T has constant sign (recall that W - T is positive just if the angle between W and T is
acute). Then on each segment y, we visually estimate the mean tangential component 7, of W,

such that 7./, = / W - Tds, where /, denotes the length of y. In practice the plot of W along y

is scaled, i.e., there is a factor SCALE such that a vector of apparent length 1 in the plot
represents a vector in C with the same direction but of magnitude SCALE. Thus if 7, denotes the

apparent mean tangential component of W along the curve segment Y, then f W Tds =
Y

n
SCALE Y 7,/,. The procedure for estimating f W - Nds is similar.
k=1 Y

EXAMPLE 1. If the plot of W along y were as indicated in FIGURE 3, to estimate f f(z) dz we
Y

might reason as follows.

D
SCALE=5

FIGURE 3

On segment AC the angle between W and T is acute, so the tangential component of W is
positive on this segment. At A4 the (apparent) length of W is about 2 units, and the tangential
component (projection of W onto the tangent line) is about 1.5 units. The vectors W decrease in
length as we move toward B, but they become more nearly parallel to T, so the tangential
component of W decreases only to about .5 units. If we estimate the mean tangential component
of W to be 1 unit along this segment, then since the length of the arc 4B is about 5 units, we
estimate 7,/; = (1)(5) = 5. The vectors W increase in length from B to C, but the tangential
component decreases from about .5 at B to 0 at C. Using an estimate 7, =.3 for the mean
tangential component on BC, and estimating the length of this segment to be 3 units, gives
7,0, = (:3)(3) =.9. On segment CD the tangential component of W starts at 0, becomes negative
with a minimum of about —.2, and finally returns to 0 at D. We estimate 7/, = (—.1)(3) = —.3,

and since the scale factor for the plot is SCALE =5, our estimate of f W -Tds would be
Y
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5(5 +.9 — .3) = 28. Similarly estimating the mean normal components of W along AB, BC, and
CD tobe v; =.5, v, = — 4,and v, = — .5 gives SCALE Yoyl = 5[(.5)S5) + (— 4)3) + (—.53)]
= —1. So if W were the Polya vector field of a complex function f(z), our geometric estimates

indicate that f f(z)dz=28—i. We cannot be certain of the sign of the imaginary part

f W - N ds, since small errors in estimating the », and /, could affect the sign of the sum, but we

can say with assurance that the flow along y is positive (about 30), and the flux across y is near
0. If an analytical calculation led to the result f f(z) dz =2xi, we would have good reason to
recheck the analysis. Y

In an introductory course on complex analysis the main “application” of complex integration
is to evaluate certain real integrals using residue calculus. Typically one completes the real
interval of integration to a closed contour in the complex plane, applies the residue theorem to
evaluate an appropriate complex integral over this contour, and then tries to determine the
contribution to the total produced by the integral along the real axis. By looking at a plot of the
Polya vector field along the contour, this last step can sometimes be clarified. (The residue at a
simple pole also can be estimated geometrically, but showing how this may be done would take us
too far from our main theme here.)

ExaMPLE 2. Evaluate

S|
11=f0 mdx.

One first uses the residue theorem to evaluate
I= f - dz =y +Y+
Y 23 + 1 ’ Y Yl YR Y2
where vy, follows the real axis from the origin to R, y; is the arc of the circle |z]= R from R to

Re*™/3 and v, is the line segment from Re>"/3 back to the origin. I =2xi Res(f, z,), where
f(z)=1/(z*+1) and z, is the simple pole of f at e™/>. We calculate

Csorme] ()]

1 . . .
Because |f(z)| decreases more rapidly than —- B 2| as |z| increases, limg _, . / f(z) dz=0. So since
YR

1
Res(f,2) = lim (2= 2)(2) =
= 13+ o)

| W

the value of I is independent of R, I =1, + I,, where I, = limR_,wf f(z) d:.

3 2mi/3

Y
__ Now the values of z° at z=¢ on y, and z=te on vy, are ider:tical, so the Polya vectors
W(¢) and W(te?"/3) are equal. However, W(¢) is directed along the path y,, whereas W(ze*"/?)
makes an angle of 7/3 with the unit tangent vector T to y,. [See FIGURE 4.] So the tangential

component of W(ze2"/?) is

W (1) |eos( §) = 31 W(0)],

and the normal component is

1w

|V_V(t)|cos(% + %) =
Thus v

1

1, V3 o
L= 11—1211, whereIl—j(; mdt

2 (%)
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So

3 .3
I=1 +12=('2' *1—2—)11,
and comparing this with the value for I found above using the residue theorem, we conclude that
I, = % Our discussion differs from the usual analytic evaluation of I in only one essential:

rather than parametrizing y, and deriving equation (*) by analytic means, our geometric
argument uses the decomposition of W(ze?"/3) into its tangential and normal components to
derive this relationship between I, and 1.

Besides clarifying the analysis of specific integrals, and throwing new light on familiar
properties of complex functions, the vector field approach to complex integrals can lead to new

theoretical results. The inequality } f f(2) a’z’ < f |f(2)| ds is fundamental in estimating complex
Y Y )

integrals, but does not seem to have a generally accepted name. It is sometimes called the triangle
inequality for complex integrals, because it may be viewed as a consequence of the fact that the
straight line segment is the shortest distance between two points in the complex plane. I have
been unable to find any discussion in the literature of the conditions under which equality holds
in this triangle inequality. The reason seems to be that the appropriate condition is not
conveniently expressible in terms of the mapping properties of complex functions. But from the
vector field point of view the condition is beautifully simple. Note that, because the value of a
contour integral is unaffected when the path of integration is changed by a continuous deforma-
tion (keeping the endpoints fixed) in the region of analyticity of the integrand, the conditions for
equality in the triangle inequality will involve both the contour y and the integrand f(z).

THEOREM. Let f(z) be a continuous complex function on a domain containing the piecewise
differentiable arc y. Then equality holds in the triangle inequality:

Lf(z)dz =fylf(2)lds

exactly when the Polya vector field W makes a constant angle with the tangent vector field T
along v.

Our proof is based on a simple lemma about the modulus of a vector sum, and its continuous
analogue for vector integrals.

n

n
LEMMA 1. If W= Y V,, then |W| = Y |V,|cos@,, where 0, is the angle between V, and

k=1 k=1
W. [In words, the sum of the components of the summands along the sum W gives the modulus of the
sum, |W|.]

Proof.

n n V‘W 1 ¥ 1
V,|cos 8, = g T = TW-W=|W|.
L Wileosti= X Ty = wy & Ve W= 1w W
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LemMA 2. If V(2), a<t<b, is any continuous vector function, and W = / bV(t) dt, then
a

|W| = fb|V(t)| cos 8(t) dt, where 6(¢) is the angle between V(¢) and W.

n

Proof. Let R,= Y. V(t,)At denote a Riemann sum approximation to W relative to the
k=1
partition of [a, b] into n equal subintervals of length A= (b—a)/n. By Lemma 1, |R,| =
n
Y |V(t,)| cos 0, At, where 6, is the angle between V(z,) and R,. As n—> o0, R,—> W, so

k=1
£

given any & > 0, by taking n sufficiently large we can make | cos 8, — cos 8(z,)| < m for
all k, where 8(z,) is the angle between V(z,) and W, and M = n[maxb] |V(2)]. Then
t€la,
€ b—a
6, —cos0(1,))At| < Z |V(tk)|M(b a) M(b—a) = =

That is, . |V(t,)|cos8,At— Y |V(t,)|cosB(t,)At as n— co. But the left side approaches
|W]|, since R, — W, and the right is a Riemann sum approximation to / |V(2)] cos 8(¢) dt. So

W= /|V(t)|cosﬂ(t)dt as claimed.

COROLLARY. If V(t) is continuous on [a,b), then

fbV( t) dtls fbl V(t)|dt, with equality
exactly when V(t) has constant polar angle. ‘ ‘

Proof. If 6(t) is the angle between V(¢) and W = / V(t) dt, then since 1 —cosf(¢)>0
throughout [a, b], we have 0 < / | V(£)|{1 - cos 8(¢)} dt, with equality exactly when cos 8(¢) =

1. So, using Lemma 2, UbV(t) dt’= [W| =f | V()| cos () dtsf | V()| dt, with equality

just if the angle 6(¢) between V(t) and W is zero, which is equivalent to the requirement that
V(t) have constant polar angle.

Proof of the theorem.

)fyf(z) dz

='fahf(2(t))z’(t) dt{ < fab|f(2(t)) l|2(2) | de = fablf(z)ldS,

with equality just if the vector function f(z(¢))z’(¢) has constant polar angle. But the polar angle
of f(z(t))z'(¢) is arg f(z(t)) + arg z'(¢), or arg z'(t) — arg f( z( ti_i, which we recognize as the
angle between the tangent vector to the path and the Polya vector W at z(¢).

Note that the radial vector field for f(z) =1/z in FIGURE 1 makes a constant angle 7/2 with
the tangent vector field on the circle |z| =1, as required in the theorem. And indeed

[l=1%dz

z

1

f|z|=1 z

the common value being 27. Another example where the constant-angle hypothesis is satisfied is
the integral / 1/(z3+1) dz discussed in Example 2; and the fact that equality holds in the

ds,

triangle 1nequahty for this integral is immediate from equation (*) of that Example.
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In view of the availability of microcomputers* with powerful graphics capabilities, and the
increasing number of students familiar with such hardware, it becomes feasible to make class
assignments involving use of Polya vector field pictures in an introductory complex analysis
course. Experience with such a geometric model, especially in the study of contour integration,
can help eliminate from complex analysis the undesirable connotations of the term “imaginary.”
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*An advantage of mainframe computers in this connection is their access to mathematical libraries for
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Proof without Words:
1 Domino = 2 Squares: Concentric Squares
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