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In [3], Z. Usiskin presents a number of intriguing identities involving products of specific
values of the sine function. Here are some examples:

sin10°sin 50°sin 70° = % (1)
$in 6°sin42°sin 66°sin 78° = 1_16 . (2)

Most of the identities derived by Usiskin have the same form: The product of the sines of k
appropriately chosen angles (k is a positive integer), all between 0° and 90°, equals 1 /2%,

In a recent conversation, Usiskin asked for an “explanation” of these identities. By that he
meant more than merely proofs of these equations. His paper contains proofs of (1) and (2) and
several other similar formulas. Rather, Usiskin is asking for a general statement which contains
his identities as special cases and for both rigorous and heuristic arguments which justify the
generalization. This note provides this type of explanation.

We begin by writing the left side of (1) and (2) in terms of complex roots of unity. We then
analyze generalizations of the expressions thus obtained and we present two evaluations of the
generalized expressions. Both are based on number-theoretic considerations; the first is elemen-
tary in nature, while the second, involving ideas from algebraic number theory, is more
sophisticated. The second approach also provides the heuristic “explanation” sought by Usiskin
for the identities. The principal result of the paper is Theorem 2, which evaluates the products
that generalize identities (1) and (2). Theorem 1, a well-known fact of algebraic number theory, is
used to prove both Theorem 2 and Theorem 3. The latter theorem describes an interesting
property of regular n-gons inscribed in a unit circle.

Formulation of the problem

To set the stage for our formal argument, let us play with the first identity. We begin by
rewriting it as

(25in10°) (25in50°) (2sin70°) =1. 3)
In the field of complex numbers,
[(cos10° +isin10°) — (cos10° — i sin10°)] /i = 2sin10°.

Let { =cos10° +isin10°. The complex conjugate and inverse of { is {~!=cos10° —isin10°
and

2sin10° = ({—¢71) /i

Also 25sin50° = ({3 — ¢73)/i and 2s5in70° = ({7 — {~7)/i. In terms of { and {~!, equation (3)
becomes:

IT (¢-¢7)/i=1.

j=1,5,7

Note that by De Moivre’s formula, {3 =1, i.e., { is a 36th root of unity.
Through analogous manipulations, identity (2) reduces to

(o/ —a™)/i=1, (4)
j=1,7,11,13
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where a = cos6° + i sin6°. By the way, note another identity:

IT 2cos(6j)°= JI (&/+a7)=1. (5)
j=1,7,11,13 j=1,7,11,13
Also observe that « is a 60th root of unity.
Lest we develop the impression that products of these kinds always equal 1, consider

(2c0s10°)(2¢c0s 50°)(2cos 70°) =3,

an interesting identity in its own right.

What is the general pattern which describes the values of these products? Several of the
identities presented by Usiskin, including (3) and (4), can be rewritten in the following form: For
n € {36,60,72,120,130,360} and »=2x/n (henceforth we use radian measure)

n/4

[T (2sin(j-r)) =1 (6)

j=1
where [1 j’ denotes the product of those integers j that are relatively prime to n. When n =36
and n = 60, one obtains identities (3) and (4), respectively.

Our overall goal (accomplished in Theorem 2) is to describe products of the following form:

k
T12/) Q

where f(x) =sin x or f(x) =cos x and k=n/4, n/2, or n. As in (4) and (5), these numbers can
be represented as products of sums of roots of unity. Thus we turn to a study of basic arithmetic
properties of roots of unity (i.e., those involving addition, subtraction, and multiplication).

Roots of unity

The investigation of arithmetic properties of roots of unity, the so-called theory of cyclotomic
fields, was pioneered in the mid-19th century by the number theorist E. E. Kummer. The facts
about cyclotomic fields which we need are elementary and can be established without recourse to
the beautiful and intricate machinery constructed by Kummer. Later we shall derive the key
results using ideas and results of algebraic number theory.

Let n be a positive integer such that n+# 1,2,4. Let

$, =cos(2m/n) +isin(27/n);

$, is a primitive nth root of unity, which means that {#=1 and {/#1 for 1<j<n—1. Of

FIGURE 1. The 12th roots of unity in the complex plane.

course, for 1 <j<n—1, {/ is also an nth root of unity, hence is a root of the equation
x" —1=0. Notice that

$i+ ¢/ =2cos(2mj/n)
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and

(& -87)/i=2sin(2m7j/n).

The primitive nth roots of unity are {} for (j, n) =1 where (j, n) is the greatest common
divisor of j and n. There are @(n) primitive roots of unity where ¢(#n), the Euler phi-function, is
defined to be the number of positive integers less than n that are relatively prime to n. The
well-known formula for ¢(#n) will come in handy later: Write n= p{* - - - p2» where py, -, p,,
are distinct primes. Then

m
o(n) =TTp" " (- 1).
i=
Over the field C of complex numbers, we have the following polynomial factorizations:
n—1
x=1=T1 (x4
j=0
and
n—1
(x"-D)/(x—1)=1+x+ - +x"" =[] (x-¢&). (8)
j=1
When x =1 is substituted in (8), the result is the following factorization of » in C:
]_Il (1-¢)=n. (9)
We wish to investigate the product

n—1
p=T1(1-81), (10)
j=
since it is closely related to the products of sines and cosines described in (7). To determine the
value of p,, we use a standard tactic in number theory: First consider the case in which » is
prime, then allow n to be arbitrary and use mathematical induction on the number of prime
factors of n.

Suppose n is prime. Then p, =TI7_;(1 —{J)=n. Next, to get a feel for the general case,
suppose n=p> where p is prime; then from (9) and the fact that {% = ¢, it follows that

V4

-1 p—-1
p2=pnkl:.[l(1_§rl1]k)=pnkl;[l(l_§:)=pn'pp=pn'p'

Thus p, =p, if n=p?.
We now have both the basis step and the gist of the idea for an inductive proof of the next
result.

THEOREM 1. If p, is defined by (10), then

_ {p if n=p“ where p is prime
P = .
1 otherwise.

Proof. We argue by induction on the number, f, of prime factors of n. (We count repeated
prime factors, so 12 has 3 prime factors by our reckoning.) We have already established the basis
step, f=1. Let n be an arbitrary positive integer with f factors. Suppose the theorem holds for
all positive integers with fewer than f factors. (Writing n = p§1 - - - p%= where the p, are distinct
primes, we have f=X%7_,a,.) Then
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n n
n=T1(1-8)=p, TT (1-8)=0,114,
j=1 Jj=1 din
(j,n)>1 d+#1

where the last product is taken over divisors on n that are greater than 1 and for each such
divisor d,

A= l_I (1 _§r{)'
(jyn)=d

We claim that 4,=p, ;. Assuming this claim, the proof of the theorem proceeds as follows:
Case 1. Suppose m =1; in other words, n = p® where p is prime. Then

a—1
[14,=11 Puyja= [1p=p"
din din i=i
d+1 d+1
by inductive hypothesis, hence p, =n/p*~ ! =p.
Case 2. Suppose m>1. Let S;={n/p;,n/p},...,n/p®} for 1<i<m. If de€S§,, then
P. /4 = Pp; by induction and

IT4,=TI Pnsa =P
des; dEs;

If

then 4,=p, ,,=1 by induction. Therefore,

n=p,114,=p,n and p,=1.
d\n
d#1

We now must prove the claim that 4,=p, /,:
Ay= ﬂ (1 _f,{)
(Jyn)=d
n/d’ ,
= IT(1-()')
n/d

= ’_l_ll,(l - §»’1/d) = Punya-

Products of sines and cosines

Let us turn to the evaluation of products of sines and cosines. Let n be a positive integer
different from 1, 2, and 4. For s=1,1/2,1/4, and with r=2x/n, let

G,(s) = T12cos( jr)
j=1
and
S,(s) = [T 2sin(jr).
j=1

Consider first C,(1):

G =TI'(&+87)

Jj=1
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ﬁ'f;f(l +{27)

Jj=1

TT(1+:2)
j=1

where
i ’
J= Z] >
j=1
the summation taken over integers j such that (j, n) = 1. On the other hand:

5,(1) = H (=87)/i

j=1

= e TT (2% - 1).
j=1

As an exercise the reader may check that ¢ () is even and J = ng(n)/2. Thus i —e() = (—1)®(m/2
and {7 =1, implying that

G(1)= ﬁ'(l +$27)
J=1
and

5,0 = ()" T (5~ 1) = (- D" T (- 5).

j=1
The numbers C,(1) and S, (1) look very similar to p,. To establish the exact relationship, we
consider several cases.
Case 1. n=p® where p is an odd prime. Because 7 is odd, the set {{2/|1 <j<n, (j,n)=1}
is precisely the set of primitive nth roots of unity, while the set {—{?/|1 <j<n, (j,n) =1} is
the set of primitive (2#)th roots of unity Therefore,

G0 = TT(1-(~527)) =py, =1

j=1
and

S, (1) = (-1 ﬁ'(1 —¢2)
Jj=1
= ( _1) 'p(n)/zpn — ( _1)<p(n)/2p.

Case 2. n=2% The sets +{—{>|1<j<n, (j,n)=1)} each consist of the (2*~!)st roots of
unity with each such root appearing twice. Thus,

G =T1(1-(-8)

j=1

(1 &) =s,(1)

:\.
N»—n

/!

L (1 g"1/2)

2-4.

~.
fuy

[\®]
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Case 3. n=2p® where p is an odd prime. As in case 1, C,(1)=1 and S,(1)=p. The
arguments parallel those in case 1.

Case 4. n=4p* where p is an odd prime. This time { —{?/|1 <j < n, (j, n) =1} is the set of
p“th roots of unity with each such root appearing twice. Therefore

G(1) = g =p?
and
Sn(a) = p%p" =1

Case 5. All other cases. In all other instances, C,(1) = S, (1) = 1. For example if » is odd, then
n is not a prime power and C,(1) = S,(1) = p, = 1. If n is even, then neither n/2 nor n/4 is a
prime power and C,(1) = S,(1) = 1. We leave the details for the reader.

Next we consider C,(s) and S, (s) for s =1/2 or 1/4. Since ¢(n) is even, |C,(1)| = C,(1/2)?
and |S,(1)| = S,(1/2)% If @(n) is divisible by 4 (this occurs, for example, in case 1 for p=1
(mod 4) and in cases 2, 4, and 5), then |C,(1/2)|= C,(1/4)? and S,(1/2) = C,(1/4)%. Note that
S,(1/4), C,(1/4) and S,(1/2) are always positive. The sign C,(1/2) is somewhat subtle since
cos(x) <0 if #/2 < x <=. We carry out the analysis in one case.

Suppose n = p* where p is an odd prime. Then

n/2
G,(1/2) = [12cos( jr)
j=1

has the same sign as (—1)® where b is the number of integers j such that 7/2 < jr < m, which
equals the number of integers j such that p?/4 <j < p®/2. A straightforward calculation shows
that this number is even if p=1,7 (mod 8) and odd if p = 3,5 (mod 8). Thus

1 if p=1,7(mod8)
-1 if p=3,5(mod83).

We summarize our findings in the following theorem.

G.(1/2) = {

THEOREM 2. Suppose n # 1,2,4. The values of C,(s) and S,(s) are given in TABLE 1.

n s S, (s) Gi(s)
1. n=p¢ 1 (—1P/2p 1
. 1if p=1,7 (mod 8)
p anoddprime  1/2 a ~1if p*=3,5 (mod8)
1 4 4
2. n=24a>2
2ifa>3
172 2 —2ifa=3
1 (—1)"’(”)/21) 1
3. n=2p“ ’
. 1if p¢=1,3 (mod 8)
panoddprime  1/2 a ~1if p* = 5,7 (mod8)
1 1 p?
4. n=4p* ‘
. p if p*=1(mod4)
p an odd prime 1/2 1 —p if p*=3 (mod4)
1/4 1 Ve
1 1 1
5. All other cases 172 1 1
(if 4 divides n) 1/4 1 1
TABLE 1
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Algebraic interpretation

Thus far we have responded to part of Usiskin’s challenge. By our standards an explanation of
a phenomenon consists in part of formulating and proving a general statement which contains the
empirical observation as a special case. But what are the heuristic notions from algebraic number
theory lurking behind the theorems we have proved?

All the calculations used to prove Theorems 1 and 2 involve linear combinations of nth roots
of unity with integer coefficients. The set of all complex numbers of this form constitutes a
subring of C, called the ring of cyclotomic integers:

m
7¢,] ={ Y a,{,{meZ,sz,ajeZ},
j=0
Actually, since {7 =1,
n—1 |
Z[5,1={ X atlla,€Z).
j=0
It is not difficult to show that
n—2 |
Z[5,]={ X atlla,€Z).
j=0
The ring Z[{,] is a subring of the cyclotomic field of nth roots of unity
n—1
Q) ={ X afila;€Qy,
j=0

which is an algebraic extension of Q of degree ¢(n). Each element a of Q(S,) is a root of a
polynomial equation of the form f,(x)=x*+b,_,x*"1+ ... +b,x+ b, where each b; is a
rational number. The elements of Z[{,] are precisely those elements a of Q(¢,) for which the
coefficients b, of f,(x) are integers. Z[¢, ] is called the integral closure of Z in Q(¢,) and is the
maximal (in the sense of inclusion) subring of Q({,) which contains Z and which has finite rank
as an abelian group.

Let R be a commutative ring with unity. An element u in R is a unit if there exists v € R
such that wv=1. The set of units U(R) of a commutative ring forms a group under ring
multiplication. For example, U(Z) = { £1}. In Z[{,], the roots of unity, +{/,0<j<n—1, are all
units. The only integers that are units in Z[{,] are +1. The structure of the full unit group of
Z[{,] is given by the famous Dirichlet unit theorem: U(Z|{,]) is the direct product of the set of
units {+{/]0 <j<n—1} with ¢(n)/2—1 copies of Z. Theorem 1 implies that if » is not a
prime power and (j, n) =1, then 1 — ¢/ is a unit in Z[¢,].

Let x be a nonzero nonunit in R. Then x is called irreducible if whenever x = yz for y,z €R,
either y or z is a unit of R. In Z the irreducible elements are precisely the prime numbers. As we
shall soon see, if n is a prime power, then the element 1 — ¢, is irreducible in Z{{,].

We now introduce the norm function from Q($,) to Q. Let a=X""la,{! € Q(¢,). We define
the polynomial a(x) =X7"la,x'. (Then a =a({,).) Define the complex number N(a), called the
norm of a, by

M(a) = [Ta(%).
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From elementary Galois theory it follows that N(a) is rational. Thus N maps Q(¢,) into Q. As a
function N has the following properties.

1. If a€Z[¢,], then N(a) €Z.

2. For a€ Q({,), a#0, N(a)> 0.

3. For a, b€ Q({,), N(ab) = N(a)N(b). (In other words, N is a multiplicative function.)

Notice that if u € U(Z[{,]), then N(u) = 1. For if uv =1 for some v € Z[{,], then1 = N(1) =
N(uv) = N(u)N(v). Since N(u) and N(v) are both positive integers, N(u) = 1. Conversely, if
N(u)=1, then u € U(Z[,]):

1=N(u)= l_Il’u(i',{) =u(¢,) Hzlu(f,,) =uv where v= Hz'u(fn) e7[¢,].
J= J= Jj=

Next we show that if N(a) = ¢ is prime in Z, then a is irreducible in Z[{,]. For if a = bc for
some b,c€Z[{,], then g=N(a)=N(b)N(c) which means that N(b)=1 or N(c)=1. If
N(b)=1 (or N(¢)=1), then b (or ¢) is a unit in Z[{,], hence a is irreducible.

We can now interpret Theorem 1 in the language of algebraic number theory. First consider
p,. When n=p“ is a prime power, then p,=N(1 —¢,) =p. In this case 1 — ¢, (and 1 —{/ for
(j,n)=1) is irreducible in Z[{,]. When » is not a prime power, then p,=N(1 —¢,)=1 and
1-¢, (and 1 — ¢/ for (j,n)=1) is a unit in Z[§,].

Now the numbers C,(1) and S, (1) are closely related to p,. For example, the following table
expresses C,(1) in terms of p,.

n pYp#2 2¢ 2p° 4p* all other cases

Cn(l) P2y (Pn/z)z Pn/Z (pn/4)2 Pn

If C,(1) = p}, where k is not a prime power and e=1 or 2, then C,(1) is the norm of a unit of
Z[{,], hence C,(1) =1. Since “most” positive integers are not prime powers, most of the time
C,(1) =1 and S, (1) = 1. The exceptional cases occur when # is a prime power or close to a prime
power. Then C,(1) (or S,(1)) is either the norm of an irreducible of Z{[{,] or the square of the
norm of an irreducible, hence C,(1) (or S,(1)) is either prime or the square of a prime.

With these remarks the algebraic “explanation” of our principal result is complete. Readers
wishing to dig deeper into cyclotomic fields and algebraic number theory may consult [1], [2], or

4].

Chords of regular n-gons

As a final application of this circle of ideas, we establish a result about regular n-gons.
Although the next theorem and proof are evidently well known, it is natural to include them in
this note.

THEOREM 3. Let P be a regular n-gon inscribed in a unit circle and let v be a fixed vertex of P.
The product of the lengths of the n — 1 chords of P drawn from v to the other n — 1 vertices is n.

Proof. Place the circle so that its center is (0,0) and its vertices are {{/|0 <j < n —1}. Without
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FIGURE 2

loss of generality, suppose v=1. For each j, 1<j<n—1, the vector joining {; to 1 is
represented by the complex number 1 — ¢/ and has length |1 — {/|. The product of these lengths
is

n—1

[T(-¢)

Jj=1

=n.

n—1 )
IT1-¢]=
Jj=1

I wish to thank D. Schattschneider, Z. Usiskin, and the referee for helpful comments.
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