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The Other Map Coloring Theorem

The problem of coloring a map on a pretzel or Mdébius
band was solved before the Four-Color Problem.
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The University of Kansas
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The Four Color Problem has probably been the most notorious mathematical problem of
modern times. This problem asks whether four colors suffice to color every planar map so that
adjacent countries, i.e., countries that share a border of positive length, receive different colors.
This question’s deceptive simplicity attracted many would-be solvers who oft times spent years on
their search for a solution. Most returned empty-handed, or worse, with a false proof. Some were
fortunate enough to have devised a new twist on the original problem that was sufficiently
interesting to attract the attention of other aficionados. The Heawood Conjecture, one of the
earliest of these offshoots, proved to be also one of the most fascinating and difficult. This other
coloring conjecture guessed at the number of colors required by maps on other, more complicated,
surfaces. Surprisingly enough, even though this later problem seems more difficult than its planar
progenitor, Heawood’s conjecture was actually verified a decade earlier. In my opinion this
verification marks a milestone in the development of the modern combinatorial approach to
geometry. It is my intention here to formulate this problem, recount its history, and discuss its
relationship to the original Four Color Problem, as well as to other branches of mathematics.

Heawood’s Conjecture

It is generally agreed that the Four Color Conjecture was first formulated by Francis Guthrie, a
graduate student at University College, London, in 1852. Appel and Haken’s proof of this
conjecture is described by them in [1] and has also received wide publicity elsewhere, so I will not
discuss it here and only refer to it when it provides an interesting parallel or contrast with the
other map coloring theorem. The first false proof of the Four Color Conjecture to be published
was given in 1879 by A. B. Kempe [14], barrister and part-time mathematician. The validity of this
proof was not challenged until 1890 when P. J. Heawood published a paper [10] in which he
accomplished several things. First, he pointed out the error in Kempe’s reasoning. Next, he
salvaged the remains of Kempe’s fallacious proof by using its techniques to show that every planar
map can be colored with five colors. Finally, he went on to state and solve, so he thought, the
same problem in a new context. This came to be known as the Heawood Conjecture.

Before describing this new context, a minor clarification is in order. Whenever a map is
mentioned above and in the sequel, it is to be understood that each country forms a single
contiguous geographical unit, unlike pre-Bangladesh Pakistan. Also, in order to minimize re-
dundancy it will be assumed that whenever a map is colored, the coloring satisfies this map-color-
ing constraint: adjacent countries receive different colors.
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FIGURE 1. Stereographic projection. A technique used to represent spherical maps on flat paper. The particular
version portrayed here will represent regions near the south pole fairly faithfully, but will greatly distort northern
countries. Nevertheless, it does preserve the adjacency pattern.

The plane is not the only surface on which maps can be drawn; they can of course also be
drawn on the surface of a sphere. However, coloring maps on spheres is really not different from
coloring them on the plane. The well-known stereographic projection of FIGURE 1, often
employed by map makers, can be used to convert any spherical map to a planar one, and the
coloring pattern of the planar projection of a spherical map can also be used to color the original
map on the sphere. Nothing is therefore to be gained by reformulating the Four Color Problem
for the sphere. Maps on the surface of a cone or a pyramid do not provide any new challenges
either, for these surfaces can be easily deformed into spherical ones in a manner that preserves the
adjacency pattern of any maps drawn on them. So, if one is to find a surface that will yield a
genuinely new coloring problem, then this surface cannot be deformable into a sphere in any
“nice” way. One such surface is a torus—the surface of the doughnut. In M (FIGURE 2) we have
a toroidal map consisting of five countries every two of which are adjacent. Such a map clearly
requires five colors. In fact, My and M, (FIGURES 3, 4) are toroidal maps with six and seven
countries in which every two countries are adjacent to each other. Consequently, these maps
require six and seven colors, respectively. The subsequent discussion centers around maps of this
type and it will therefore be convenient to have a name for them. Accordingly, a complete m-map
is a map which consists of m countries every two of which are adjacent. Such a map clearly
requires m colors. It is natural to ask at this point whether there exists a complete 8-map. The
answer is negative for the torus.

@@

FIGURE 2. Mj, a toroidal map of five countries every FIGURE 3. Mg, a toroidal map of six countries every
two of which touch each other. . two of which touch each other.
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FIGURE 4. M,, a toroidal map of seven countries FIGURE 5. Mg, a complete 8-map on the double
every two of which are adjacent. torus S,.

The mathematician A. F. Mobius (see [2]) had already pointed out in the 1840’s that it is not
possible to draw a complete 5-map in the plane. In later years this observation was sometimes
misconstrued as a solution of the Four Color Problem. It is, of course, no such thing. The
nonexistence of a complete 5S-map in the plane does not preclude the existence of an incomplete
planar map with a large number of countries, whose complexity actually requires five or more
colors. We now have an analogous situation on the torus, for it supports a complete 7-map and no
complete 8-map can be drawn on it. Does this mean that every toroidal map can be colored with
seven colors? Such indeed is the case. What is surprising is the relative ease with which this answer
was obtained. So simple is this proof, that its main points deserve to be brought out here.

In any map, let » denote the number of its nodes, namely, the number of points at which three
or more countries meet. Let b denote the number of borderlines in the map, in other words, curves
that go from one node to another. The Euler-Poincaré formula [15], one of the central facts of
geometry, implies that if a toroidal map has m countries, then

n—b+m=0. (1)

For the maps M;, Mg, and M, this formula takes the forms 9 —14+5=0,9 — 15+ 6 =0, and
14 — 21 + 7 =0, respectively. For the sake of accuracy let me point out that the Euler-Poincaré
formula does not apply to maps in which one country has the shape of a ring and completely
surrounds one or several other countries. Such maps, however, can be easily disposed of by certain
standard reduction techniques and will be ignored in the sequel.

Let A denote the average number of borderlines that occur on the boundaries of the m
countries of a given map. Then mA is the count of all the occurrences of borderlines on the
boundaries of these countries. Since each of the b borderlines occurs on 2 of these boundaries, it
follows that

mA
= (2)

Turning our attention to the nodes, observe that 4 must also be the average number of nodes on
the boundaries of these countries, since each country has an equal number of nodes and
borderlines on its boundary. However, in contrast with the borderlines, we cannot specify the
number of countries on whose boundary a given node will occur. Still we can say that each node

appears on the boundaries of at least 3 countries. This gives us the following weak analog of
equation (2), which is nevertheless sufficient for our purpose:

b

mA

n< 3 (3)
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Combining (1), (2), and (3) we obtain

T—_2—+m211—b+ﬂl=0,
A
m(l—-g)?()

Since m is a positive quantity, we may conclude that A4 < 6. In other words, the average number
of borderlines on the boundary of a typical country in any toroidal map does not exceed 6.
Consequently we obtain the following surprising fact: in every toroidal map there must be a country
that is adjacent to no more than six other countries. This fact immediately points out the
impossibility of drawing a complete 8-map on the torus, since in such a map every country is
necessarily adjacent to seven other countries. This fact can also be used to define an algorithm for
coloring any toroidal map with 6 + 1 = 7 colors. Thus, every map on the torus can be colored with
seven colors and some such map (the complete 7-map) actually requires seven colors. In other
words, the answer to the toroidal analog of the Four Color Problem is that 7 colors suffice.
Heawood was the first to formulate this analog clearly and to answer it. He did much more,
however.

Why does the torus allow for more complicated maps than the sphere? (The complexity of a
map is here equated with the number of colors it requires.) One might say that this additional
complexity is made possible by the hole in the torus—the doughnut hole. The adjacency pattern
of a spherical map is constrained by the fact that a country that lies completely in the northern
hemisphere cannot possibly be adjacent to one that lies entirely in the southern hemisphere.
However, if a tunnel is bored from the north pole of the sphere to its south pole, thus converting it
essentially into a doughnut, it now becomes possible for a northern country to reach out and
touch a southern one without crossing the equator, namely, along the walls of the tunnel. From this
point of view, a tunnel through a surface may be thought of as a bridge that connects two parts of
the surface and allows for a higher degree of complexity in the adjacency pattern of its maps. So if
we wish to find a surface that supports a complete 8-map (which the torus does not), it is clear
what must be done. A tunnel should be bored through the torus, or, equivalently, two noninter-
secting tunnels should be bored through the sphere. The resulting surface, the double torus, does
indeed support the complete 8-map M; of FIGURE 5.

We now have a technique for creating surfaces that would seem to allow for maps requiring
arbitrarily many colors. All that needs to be done is to bore enough tunnels through the sphere.
We will call the surface that results from boring g nonintersecting tunnels through the sphere the
surface of genus g and denote it by S,. Thus S, is the double torus, the torus itself is S, and the
surface of the unperforated sphere is S,. The great mathematician Bernard Riemann brought
these surfaces into the foreground of mathematics in 1851 [18] when he showed that they play a
focal role in the calculus of complex variables. His theory was so central to nineteenth century
mathematics that it has been said [4, p. 121] that at one time all research mathematicians had to
be familiar with it. It is therefore not surprising that shortly after the Four Color Problem was
formulated for planar maps, mathematicians would ask the same question in the context of
Riemann’s surfaces.

The Euler-Poincaré formula states that whenever a map with m countries, b borderlines, and n
nodes is drawn on the surface S,, then these parameters are linked by the equation

n—b+m=2-2g. 4

Heawood used this fact to show that if g > 1, then any such map can be colored with no more than

H,=| 37+ T +a5g)| %)

colors, where the brackets in (5) denote the integer part of the enclosed number. This guarantees
that any map on the torus can be colored with H; = [5(7 + y1 + 48 )] =7 colors, that every map
on the double torus can be colored with H, =[$(7+ V1 + 96)]=[8.42...]=8 colors, and that
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FIGURE 6. A reduction process for maps that diminishes the number of countries without increasing the number of
required colors.

every map on S, can be colored with 9 colors.

Heawood’s proof that the number of colors specified in (5) is actually sufficient is paraphrased
as follows. Call those borderlines along which a country touches its neighbors its contacts (clearly
every country possesses at least as many contacts as neighbors, and sometimes more). Suppose
that there is an integer x such that every map on S, has a country with fewer than x contacts.
Then we claim that x colors suffice to color every map on S,. For in any such map we can
annihilate the country with less than x contacts, making those round it close up in the space
which it occupied (FIGURE 6), and obviously the original map can be done in x colors if the
reduced map can (for whatever the coloring of the countries around, there would be a color to
spare for the annihilated country). Having thus described an induction process, Heawood now
needed only to find the smallest x that satisfied this condition, and he used an averaging
argument that is essentially the same as the one used above to argue that the torus does not
support a complete 8-map. First, however, Heawood observed that every map on any surface can
be converted by the operations described in FIGURE 7 to a map in which every node appears on
the boundary of exactly 3 countries, this new map requiring no more colors than the original one.
Consequently, with n, b, m, A denoting the same quantities as before, equation (2) still holds,
whereas inequality (3) can now be replaced by the equation

n= ’"—3/‘ . (6)
If we now substitute (2) and (6) in (4) we obtain
_ 2g—2
A= 6(1 26 ) )

As was argued for the torus, every map on S, clearly has a country with no more than 4
adjacencies, so any x satisfying
x> A (8)

should do. Expression (7), however, still contains an m which depends on the map rather than the
surface. To eliminate this m Heawood observed that 4 diminishes as m increases, and since every
map with no more than x countries clearly must have a country with fewer than x contacts, it
follows that in order for (8) to hold we need only guarantee that

x>6(1+2g_2). (9)

x+1

FIGURE 7. How to transform any map to one requiring no more colors, but in which every node is on the boundary of
exactly three countries.
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Thus, if we let H, denote the smallest of all the integers x that satisfy inequality (9), then the
maps on the surface S, can be colored with H, colors. Since for all smaller values of x the reverse
inequality must hold, thlS can be rephrased as saying that H, is the largest integer x that satisfies

the inequality
x—1< 6(1 + _Zg;Z) .
X

This is a straightforward quadratic inequality in x, whose solution yields the value specified in (5).

The above argument is essentially the same as the one presented by Heawood himself. I have
even gone so far as to leave intact some of the rougher edges and omissions in his proof, partly for
the sake of brevity, and partly to prepare the reader for Heawood’s real mistake, which is to be
discussed shortly. Cleaner arguments can be found in [2] and [20].

To demonstrate that H, colors are in fact required by some map on S,, Heawood also drew a
complete 7-map on the torus—essentially the same as M;—but only asserted the existence of a
complete H,-map on the surface S, for all g>2. “For more highly connected surfaces,”
Heawood stated, “it will be observed that there are generally contacts enough and to spare for the
above number of divisions [countries] each to touch each.” In other words, Heawood thought it
was easy to see that a complete 9-map could be drawn on S;. Anyone who tries to draw such a
map will quickly discover that not only is this quite a difficult task, but it also sheds no light on
the question of how to draw a complete 10-map on S,. Thus, what Heawood accomplished was to
show that no map on the surface of genus g > 1 requires more than H, colors. What he failed to
show was that a map requiring this number of colors could actually be drawn on S,. So a question
he believed he had both raised and answered, in fact remained open. The number H, defined in

8
(5) acquired the name Heawood number and the assertion that The Heawood number H, is the

largest number of colors required to color any map on the surface of genus g > 1 came to be krigown as
the Heawood Conjecture.

The observant reader will have noted the qualification g>1 that occurs in the statement of
Heawood’s conjecture. Were this qualification absent, the conjecture would apply to the surface
S, (the sphere), and it would assert that any spherical map could be colored with no more than
H,=[3(7+ V1 + 0)]=4 colors! In other words, the removal of the inequality g > 1 would make
the Heawood Conjecture contain the Four Color Conjecture as a special case. Unfortunately, the
condition g > 1 cannot be disregarded. In Heawood’s proof, the quantity

A=6(1+2g_2)
m

was observed to be a decreasing function of m. This of course fails to be the case when g= 0, and
so the proof breaks down for this value of g. This is a good example of the many near misses that
proliferate in the history of the Four Color Problem.

Heffter’s contributions

The deficiency in Heawood’s paper was pointed out one year after its publication by Lothar
Heffter [11]. Heffter also realized that the problem needed a new approach. Trying to draw
complicated maps on 2-dimensional drawings of perforated spheres was a very cumbersome way
to attack this problem. As an alternative he suggested that the adjacency pattern of a map (which,
after all, is all that matters here) be recorded in the following manner. Suppose an inhabitant of
some country were to inspect its borders by traveling along them in, say, the counterclockwise
direction (counterclockwise from the point of view of an observer stationed right above his
country). This inhabitant might then record, in order, the neighboring countries along whose
border he is traveling. For instance, in the map M, of FIGURE 8, the inspector of country 1, if he
starts his tour from a location on the border his country shares with country 2, would write 2, 4, 3
in his logbook. Had he started from a location on the border his country shares with country 3, his
entry would have been 3, 2, 4. These two records are considered to be the same since it is only the
cyclic ordering of the neighbors that matters to us. Now, country 2’s inspector, in touring his

136 MATHEMATICS MAGAZINE



country adjacency record

1) 2 4 3
2) 1 3 4
3) 4 2 1
4) 3 1 2
FIGURE 8. M,, a complete 4-map on the sphere. FIGURE 9. A4,, the adjacency pattern for the map M,.

borders, would write 1, 3, 4. The information obtained from these tours and those of the
inspectors of countries 3 and 4, can be tabulated as the array 4, in FIGURE 9. When applied to
the toroidal complete 7-map M,, this process yields the array 4, in FIGURE 10. The array A, has
a very exciting pattern. Every row can be derived from the previous one by the addition of 1 to
each entry of the latter. This arithmetic is modulo 7; that is, we stipulate that 7+ 1 =1 and that
the first row follows the seventh one.

country adjacency record
1) 2 4 3 7 5 6
2) 3 5 4 1 6 7
3) 4 6 5 2 7 1
4) 5 7 6 3 1 2
5) 6 1 7 4 2 3
6) 7 2 1 5 3 4
7 1 3 2 6 4 5

FIGURE 10. 44, the adjacency pattern for the map M., in Figure 4.

Before we go on to discuss these arrays in general, it should be pointed out that two miracles
occurred in the passage from the complete 7-map M, to its array 4. In the first place, the array
displays a pattern, or a symmetry, that is totally obscured in the original map. Symmetry, of
course, is one of the strongest tools of mathematics and of science. Hence, finding it in such an
unexpected place is indeed an undisguised blessing. The second observation is even more
surprising. The numbers 1,2,3,... were used as a matter of convenience only. We could, and
perhaps should, have used labels such as “Spain” or “Union of the Free Toroidal Republics.”
Nevertheless, we find that these countries, when symbolized by numbers, follow a very rigid
arithmetical pattern. This phenomenon has been observed and exploited in other coloring
problems, but not in the proof of the Four Color Theorem. Both of these miracles were crucial to
the eventual resolution of Heawood’s conjecture.

Let us now return to the arrays themselves. The array A, obtained from the complete 4-map
M, does not quite conform to the nice pattern that was discovered in A,. It seems that in certain
columns one might need to subtract rather than add 1. Still, there is enough regularity in the rows
of this array to justify some hope for a general pattern.

An obvious question at this point is: which arrays correspond to some complete m-map? Such an
array must clearly have m rows, and the ith row must be some permutation of the numbers
1,2,...,i—1,i+1,...,m. Let us call this requirement the shape constraint. An example of
another array that satisfies the shape constraint is B,, shown in FIGURE 11. A little experimenta-
tion, however, will quickly convince the reader that the array B, cannot correspond to any
complete 4-map. This can be reasoned out by observing that according to the first row of this
array, country 1’s inspector, traveling counterclockwise, encounters country 2 just before country
3. Hence, the node formed by countries 1, 2, and 3 must form the configuration of FIGURE 12.
However, according to this portion of the map, country 2’s inspector must encounter country 3
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country adjacency record

1) 2 3 4
2
) 3 4 1 1 3
3) 4 1 2
4) 1 2 3
2

FIGURE 11. By, an array that is not the
adjacency pattern of any map. FIGURE 12

just before he encounters country 1, which contradicts the information in the second row of B,.
This observation generalizes to the following consistency constraint to which all arrays that
describe complete m-maps must conform: If in the ith row of the array, j is followed by k, then in
the kth row, j must be preceded by i. In other words,

if the ith row is

i) ... j k
then the kth row is
k) ... i

Surprisingly, there are no other constraints. Any array that satisfies both the shape and
consistency constraints describes a complete m-map. Moreover, as Heffter demonstrated, this
complete m-map verifies the Heawood Conjecture for the surface S, for g=(m —3)(m — 4)/12.
Since the genus g (number of tunnels) of a surface is necessarily an integer, it follows that the
product (m — 3)(m — 4) must be divisible by 12, from which it follows that m itself, when divided
by 12, must yield 0, 3, 4, or 7 as remainder. Since, in general, division by 12 yields one of 12
possible remainders, this approach can yield the appropriate complete m-map for at most one
third of the possible values of m. As it happens, even this estimate is overly optimistic. Heffter
was aware that an array possessing the additional cyclic structure displayed by 4, could only be
constructed when the remainder of m divided by 12 was 7. All of these limitations notwithstand-
ing, he felt that this was an approach well worth pursuing. He translated the problem into a purely
number theoretic one and then showed that the required cyclic arrays A4,, exist for those values of
m that satisfy conditions i)-iii) below:

i)  m leaves remainder 7 when divided by 12,
ii) (m+2)/3is a prime number,
iti) 2% —11is not divisible by (m + 2) /3 for k=1,2,3,...,(m—17) /6.

Among the values that satisfy these conditions we find the numbers m = 19,31, 55,67,139,175,199.
Consequently, Heffter verified the Heawood Conjecture for the surfaces S, where g=
20,63,221,336,1530,2451,3185. Actually, he accomplished a little more than that. Since H,; =
[$(7+V1+48x21)]=[19.38...]=19 = H,,, and since every map that can be drawn on S,, can
also be drawn on S,;, it follows that Heffter’s construction of A,y also verifies the Heawood
Conjecture for S,;, as it does for S,, as well. Similarly, the existence of the array 4,4, verifies the
Heawood Conjecture for all surfaces with at least 3185 but no more than 3217 tunnels. The
algebra Heffter used in his work was deep and difficult enough that he could not decide whether
the class of surfaces to which his proof applies was finite or infinite. Even today it is still not
known whether Heffter’s solution applies to infinitely many surfaces.

Heffter’s contributions can be summarized as follows. He pointed out the error in Heawood’s
paper and thereby attracted the attention of the mathematical world to Heawood’s beautiful
conjecture. He showed how this geometrical problem could be translated first to a combinatorial
one of arrays, and then to an algebraic problem in the theory of numbers. He went on to solve this
number theoretic problem in some special cases. Finally, a fact that was not mentioned above, he
also confirmed the Heawood conjecture for all surfaces of genus at most 7 by constructing the
appropriate arrays.
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The resolution of Heawood’s conjecture

Nothing was contributed toward the resolution of Heawood’s conjecture in the sixty years that
followed the publication of Heffter’s work. That mathematicians were aware of it is attested to by
the fact that it is mentioned in Hilbert and Cohn-Vossen’s 1932 book Geometry and the
Imagination [12], where it is called the problem of contiguous regions. The lack of progress on this
problem during the first half of this century can be attributed to three factors. First comes its
inherent difficulty. Next, some mathematicians believed that the problem had indeed been solved
by Heawood. Courant and Robbins, in their 1941 book What is Mathematics? [5, p. 248] wrote:
“A remarkable fact connected with the four color problem is that for surfaces more complicated
than the plane or the sphere the corresponding theorems have actually been proved.” (As late as
1980, I met a topologist who believed the same.) Finally, and perhaps most significantly, to many
mathematicians this problem seemed to represent a blind alley. It had been shown towards the
end of the 19th century that the combinatorial approach could be very fruitful in analyzing
geometrical problems in all dimensions. However, there were no indications that a solution to
Heawood’s problem would lead anywhere else. Even the Four Color Problem, which many had
discounted for the same reason, has corollaries which mathematicians consider to be interesting,
although perhaps not “important.”

The first breakthrough to follow Heffter’s pioneering work was produced by G. A. Dirac [7], a
relative of the famed physicist, in 1952. To understand his accomplishment, let us recall the issue.
It was known that every map on the surface of genus g could be colored with no more than H,
colors. To show that this number of colors might actually be required, it would suffice to draw a
complete H,-map on this surface. But is the existence of such a complete map on the surface
really necessary? Conceivably the surface S; might support a map that requires 9 colors even
though it might not admit a complete 9-map. That, after all, was the whole point of the Four
Color Problem. It was known that no complete 5-map could be drawn in the plane, but that did
not preclude the possibility of some other planar map actually requiring 5 colors. Dirac showed
that this situation could not arise on the other surfaces. Specifically, he demonstrated that if the
surface of genus g supported a map that required H, colors, then it would also support a
complete H,-map. Actually, he only proved this for the cases g =3 and g> 5. His arithmetic got
in the way of the cases g=0,1,2,4. Had his proof applied to the case g=0, he would have
produced a proof of the Four Color Conjecture—yet another near miss. However, the other values
he missed, g=1,2,4, were already covered by Heffter’s work.

Next, in what has been called “a tour de force of combinatorial brilliance” ([22, p. 317]),
Gerhard Ringel [19] constructed in 1954 a set of arrays which confirmed the existence of a
complete H_-map on the surface S, for all those values of H, that leave a remainder of 5 upon
division by 12. At last the Heawood conjecture had been verified for an infinite number of
surfaces.

The special significance that the number 12 has for this problem was pointed out earlier in the
discussion of Heffter’s work. It was noted there that arrays that satisfied both the shape and the
consistency constraints could only be obtained when m left remainders of 0, 3, 4, or 7 upon
division by 12. Since the remainder 5 is not one of these, Ringel had to relax the constraints
somewhat. He chose to relax the shape constraint as is evident in the arrays A{"" in FIGURE 13

country adjacency record
1) 2 4 3 5
2) 3 4 1 5
3) 1 4 2 5
4) 1 2 3
5) 3 2 1

FIGURE 13. 4§~ Y, the adjacency pattern of the map M{™ V.
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1) 6 4 11 g8 13 3 9 17 2 16 15 12 7 5 14 10
4) 9 7 14 11 1 6 12 17 5 16 3 15 10 8 2 13
7) 12 10 2 14 4 9 15 17 8 16 6 3 13 11 5 1
10) 15 13 5 2 7 12 17 11 16 9 6 1 14 8
13) 3 1 8 5 10 15 17 14 16 12 9 4 2 11
2) 16 1 17 12 15 11 13 4 8
5) 9 2 10 13 8 12 16 4 17 15 3 14 1 7 11
8) 12 5 13 1 11 15 16 7 17 3 6 2 4 10 14
11) 15 8 1 4 14 3 12 16 10 17 6 9 5 7 13
14) 3 11 7 2 6 15 16 13 17 9 12 8§ 10 1
3) 16 2 9 1 13 7 6 8§ 17 10 12 11 14 5 15

4

7

[e)}
—
N
—
o
w
O
O N W AN W

6) 16 5 12 110 9 11 17 13 15 14 2 8 3 7
9) 16 8 15 13 12 14 17 1 3 2 5 11 6 10

12) 16 11 3 10 7 1 15 2 17 4 6 5 8 14 13
15) 16 14 6 13 10 4 3 5 17 7 9 & 11 2 12 1
16) 1 2 3 4 5 6 1 g 9 10 11 12 13 14 15
17) 14 13 6 11 10 3 8 7 15 5 4 12 2 1 9

=1
Al P

FIGURE 14. An array that describes the édjacency pattern of a nearly complete map on S,5. This map has seventeen
countries of which every two, except 16 and 17, are adjacent to each other.

and A{; " in FIGURE 14. Specifically, in A{™", row 4 does not contain the entry 5 and, vice versa,
row 5 does not contain the entry 4. This means that in the associated map M{™ ! of FIGURE 15
the two countries 4 and 5 are not adjacent to each other. The superscript (—1) in the notation for
the array and the map records the fact that both the array and the map lack one adjacency to
being complete. Similarly, in the map represented by 4{; 1, countries 16 and 17 are not adjacent
to each other. Now it so happens that the array 4{; " actually represents an “almost complete”
17-map on the surface S;5. Connect the nonadjacent countries 16 and 17 by boring an additional
tunnel through S, . This gives us a complete 17-map on the surface S,. Since H;, = 17 this array
implies the validity of the Heawood Conjecture for the surface of genus 16.

Due to the special role played by the number 12, the problem was now recognized as
possessing 12 cases, depending on H,’s remainder when divided by 12. By 1961 Ringel had also
resolved the cases of remainder 7, 10, and 3, making use of the same technique as in the case of 5.
The year 1963 saw the emergence of some new tools. William Gustin [9] discovered a way of
encoding arrays in a form that greatly resembles electrical networks. In these, the numbers
originally used to label countries are interpreted as denoting the intensity of a (fictitious) current
flowing along the branches of the network in the direction indicated by the arrowheads.
Kirchhoff’s Current Law, which states that the total current entering a node equals the total

S

FIGURE 15. MV, an almost complete 5-map on the sphere. Every two countries, except 4 and 5 touch each other.
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FIGURE 16. CGjy;, a current graph which encodes a complete 31-map on Sg;.

current leaving it, is also satisfied by these networks. Because of this resemblance, Gustin’s
networks have been dubbed “Current Graphs.” To indicate the manner in which an array may be
stored in a current graph, we decode CG;,; (FIGURE 16). Choosing our departure point arbitrarily,
we start out with the network branch labelled 5 and proceed to node 4. From here we could
choose to go to either B or C. The correct choice is indicated by the way in which the node is
drawn. A solid dot indicates that at this node the traveler should choose the left fork, whereas a
hollow dot dictates a choice of the right fork. Hence we go on to B and record a 13 in our
logbook, to follow the previous entry 5. Node B is also a solid dot, and so we go to D from here
and record a 14 in the logbook. By the time node J is reached, the logbook’s entries will be
5,13,14,12,15,11. Since the node J is represented by a hollow dot, we choose the right fork and
go on to I, adding the entry 6 to the log. From I we again bear right, toward H, but this time,
since we are progressing against the arrowhead, instead of recording 4 in the log, we enter
31 — 4 =27. From the solid dot of H, we choose the left fork to F and record 31 — 15 =16 in the
log. The solid and hollow nodes are so placed that the initial current 5 will not be encountered
again before all the possible currents from 1 to 30 have been recorded in the logbook. In other
words, this procedure is set up so that each of the branches of the network will be traversed
exactly twice, once in each direction. If we consider the above tour as terminating when 5 is
reencountered, then the final log is:

5,13,14,12,15,11,6,27,16,28,7,29,17,30,8,
26,20,4,10,3,19,2,9,1,18,23,22,24,21,25.

The ith row of the array 45, is now obtained by adding i to each entry of the above log, with the
stipulation that 31 + i is to be replaed by i. This array satisfies both the shape and consistency
constraints and so it attests to the existence of a complete 31-map on the surface Sg;. Since
Hg; = [5(7 + V1 + 48 X 63 )] = 31, the Heawood Conjecture for that surface is verified.

Mysterious as the above procedure may seem, we know why it works. The distribution of the
currents among the links of the network and the relative placements of the solid dots versus the
hollow dots among the nodes are such as to guarantee that the shape constraint is fulfilled. It can
also be shown that Kirchhoff’s Current Law is transformed in the array into the consistency
constraint. On the other hand, the heuristics underlying the idea that a map can be encoded as an
electrical network are still not well understood. It should be pointed out that complex function
theory, within which Riemann’s surfaces were first recognized, has very strong connections to
potential theory. Indeed, some very deep mathematical theorems become “obvious” when
translated into statements about electrons and electrical fields. Be that as it may, these current
graphs are of course much more tractable than the arrays they represent, and these arrays are in
turn much more tractable than the actual maps they represent. Nevertheless, even these graphs are
far from easy to find, especially as for some of the cases they have to be slightly modified in order
to work. It was not until 1968 that the combined efforts of W. Gustin, R. K. Guy, C. M. Terry,
L. R. Welch, and, most of all, G. Ringel and J. W. T. Youngs (see [20] for details) resolved all of
the remaining eight cases of remainders 0,1,2,4,6,8,9,11. Their work left the cases H, =18,20,
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and 23 unresolved, but these gaps were filled within one year by J. Mayer [16] (professor of
French literature at the University of Montpellier). It took three quarters of a century to verify
completely the statement that Heawood felt was too obvious to require justification.

Coloring maps on other surfaces

The work described above completely resolved the coloring problem on Riemann’s surfaces,
except for the sphere. An issue that has so far been sidestepped is the question of whether there
are any other surfaces for which interesting coloring problems could be posed. The reader is
reminded that maps of higher complexity were made possible by boring tunnels through the
sphere, thus motivating the definition of the Riemann surfaces. Is there anything else that could
be done to a sphere to allow for more complex maps? The answer is yes.

Mobius Strip II, woodcut by M. C. Escher, 1963.
Copyright M. C. Escher heirs ¢ /o Cordon Art B. V.-Baarn, Holland.
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edge of Mobius strip

FIGURE 17. /\715, a complete S-map on the Mobius strip. FIGURE 18. Trying to patch a hole with a Mdbius strip.

The map M (FIGURE 17) displays a complete 5-map on the Mobius strip. This strip is
obtained by making a 180° twist in a long ribbon and then gluing its two ends to each other. Now
this map can be transferred to the sphere in the following manner. Observe that the edge of the
Mobbius strip consists of a single closed loop, as opposed to, say, the two loops that would have
formed the edge had the ribbon not been twisted before its ends were glued. If a disk is cut out of
the surface of the sphere, a closed loop is left as the edge of the perforated sphere. Since all closed
loops are essentially identical, it should be possible to patch the hole in the sphere by sewing its
edge to the edge of the Mobius strip. Most of the readers who try to carry out this patching
process will soon discover that the twist in the strip has a nasty tendency to get in the way (see
FIGURE 18). However, my four-dimensional readers should experience no such difficulties. That
extra dimension will provide them with all the room they need to maneuver. For this reason
mathematicians have accepted the resulting hybrid as a genuine surface, even though its internal
structure prevents it from being realized in our three-dimensional space. It meets the criteria that
mathematicians have set for surfaces, namely, they can have no edges and at each point they must
be “reasonably” flat.

Of course, once this twisted surface is accepted, one must be prepared to allow for the
possibility of adding more than one twist, just as we allowed for the possibility of boring several
tunnels in the sphere. The surface obtained by adding g twists to the surface of the sphere is
called the one-sided surface of genus g, and is denoted by Sg. It is one-sided because the twisted
patches would allow an ant living on the outside of the sphere to move to its inside simply by
walking along a twist in the manner depicted by Escher’s famous woodcut. The one-sided surface
S, is the projective plane and S, is the well-known Klein bottle. By way of contrast, Riemann’s
surfaces are all two-sided. An ant on the outside has no way of getting into the inside. And what
would happen if twists were added to the other two-sided surfaces? Would we then obtain a whole
new bewildering collection of surfaces with mixed numbers of tunnels and twists? Fortunately the
answer is no. It has been known since the turn of the century that when a twist is added to the
two-sided surface of genus g, one simply obtains the one-sided surface of genus 2g + 1. Similarly,
when a tunnel is bored into the one-sided surface of genus g, the result is the one-sided surface of
genus g+ 2. Moreover, there are no other surfaces. The two sided and the one-sided surfaces
comprise the totality of all surfaces (see, for example, [15]).

One-sided surfaces were still very new when Heawood formulated his problem. At the time
they were probably regarded as a curiosity rather than a significant phenomenon, which may
explain why Heawood, as well as others who should have known better, ignored them. They were
mentioned by Heffter, but he felt, for good reasons, that once the coloring problem was resolved
for the two-sided surfaces, a certain theoretical connection between them and their one-sided
siblings could be utilized to solve the same problem for the latter as well. In the event, Heffter’s
good reasons notwithstanding, history did not bear him out.

The Euler-Poincaré formula for the one-sided surfaces states that

n—b+m=2—g
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holds for maps on 58. From this it follows that every map on this surface can be colored with

A, =[%(7+/1+24g)]
colors, and it is of course natural to conjecture that every §g supports a map that actually requires
that many colors. This was indeed done in 1910 by the topologist H. Tietze [21], who also pointed
out that the complete map M, of FIGURE 19 was implicit in some work by Mobius [17]. Since

=6, this map solves the coloring problem for ;. Every map on S, can be colored with 6
colors and some such map in fact requires as many as 6 colors.

In 1934, P. Franklin [8] uncovered a surprising fact. He showed that while A, = 7, every map
on the Klein bottle S, could be colored with no more than 6 colors! This was the first known
failure of the conjecture that each of the numbers H, and flg is indeed required by some map on
the corresponding surface. Once such an exception is found, of course, it becomes reasonable to
expect others to occur. By 1943, the work of I. N. Kagno [13], H. S. M. Coxeter [6], and R. C.
Bose [3] showed that no such failures could occur on S, S,, S5, S5, or S;. They did this by
constructing arrays for the appropriate complete m-maps. These arrays are very similar to the
ones used for the description of maps on the two-sided surfaces. The main difference is that the
consistency rule is replaced by:

If the ith row is

i) ... j k
then the kth row is
either kY ... i
or k) ... Jj i
and the ;th row is
either J) ... ki
or J) .. ik

In 1954, in the same paper that contained his first major contribution towards the resolution of
the Heawood Conjecture, Ringel completely solved Tietze’s coloring problem for one-sided
surfaces. He accomplished this by producing Heffter-style arrays for the requisite complete maps
on all of these surfaces. This was a truly formidable achievement. His proof, by the way, showed
that the Klein bottle provided the only exception to the rule that, in general, the number H is the
solution of the coloring problem on S The reason for the earlier resolution of the problem for
one-sided surfaces is that the con51stency constraint for these is considerably less restrictive than
the one for the two-sided surfaces. This pattern recurs frequently in the theoretical study of

FIGURE 19. Mﬁ, a complete 6-map on the Mgbius strip.
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surfaces. Many questions are formulated first in the context of two-sided surfaces, because they
are so easily visualized. They are first resolved, however, for one-sided surfaces, despite the fact
that the natural habitat of these surfaces is in four-dimensional space.

In 1967 Youngs simplified Ringel’s solution by replacing his arrays with current graphs. The
complete solution to the problems posed by Heawood and Tietze is now known as the Ringel-
Youngs Theorem. In 1974 Ringel published his book Map Color Theorem [20], which contains
both the complete details of the solution and an explanation of the underlying theory of current
graphs.

I had several reasons in mind when I decided to recount the history of the Ringel-Youngs
Theorem. It is one of my favorite theorems, both because it deals with surfaces and because its
proof is so rich. Moreover, I felt that its history makes for a good story. Finally, I saw this as a
way to bring the reader closer to the way mathematicians actually operate. Problems, be they
solved or unsolved, give rise to more problems. We saw the Four Color Problem motivate the
Heawood conjecture, and the latter eventually gave rise to Tietze’s one-sided analog. The path
leading to a problem’s solution is often littered with mistakes, such as those made by Kempe and
Heawood. It is the good mathematician who can extract useful information from his own and
other people’s mistakes, and use them as a basis for new investigations. We saw mere notational
conventions transformed into crucial breakthroughs, while other promising technical approaches
dwindled into blind alleys. The final solution came as a result of fusion of disparate mathematical
disciplines and the cooperative efforts of several mathematicians. These are only some of the
elements that go into the production of a mathematical proof, but they are also ones that do not
appear in the final product.

The author thanks all those readers of earlier drafts of this article for their helpful critical comments.
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