ARuClsd

Constructive Ordinal Notation Systems

G: Adam, did you find a good system for
naming ordinals?
A: Ordinals? | thought you said ‘animals.”

FrEDERICK GASS
Miami University
Oxford, OH 45056

Cantor’s ideas for the development of transfinite numbers can be traced back through a
sequence of memoirs to his early research on trigonometric series. In this early research, Cantor
included a study of the irrational numbers, using rational Cauchy sequences to define them, and it
is in this setting that he seems to have drawn the inspiration for sequences of counting numbers
that go beyond the integers.

Recall that if S is an increasing Cauchy sequence of rationals, then S belongs to some
equivalence class of Cauchy sequences that by definition constitutes a certain number x, either
rational or irrational. Viewing the situation geometrically, we identify x with the point on the real
line that is the limit point of the sequence S, and we use this image to guide most of our thinking
about x. In fact, prior to the time of Weierstrass it had been presumed that this geometrical point
of view was a sufficiently rigorous approach to the theory of irrational numbers.

By analogy with this view of the irrationals, Cantor proposed in 1882 (Introduction to [3], p.
54) that the sequence, 0,1,2... be considered to have a least upper bound or limit, now denoted
by w, and that w be followed in order by numbers w + 1, w + 2, w + 3, and so on. The process of
passing from a number x to its immediate successor x + 1 was Cantor’s “first principle of
generation”, and the process of passing from a denumerable increasing sequence of numbers to its
limit was his “second principle of generation.” If you begin with 0 and repeatedly apply the first
principle, you obtain the natural numbers (the nonnegative integers), which Cantor called the
“first number class.” By applying the second principle once, you obtain w; then repeated
application of the first principle yields w + 1, w + 2, w+ 3,..., and then another application of
the second principle yields w + w, also called w - 2. In this way the generating process continues on
and on. Incidentally, if you are curious about the use of w -2 rather than 2 - w, then you might
enjoy reading about the noncommutative arithmetic of these transfinite numbers. (Section 21 of
[9] is a good reference for this topic. You will learn that 2 - w is equal to w, asis 1 + w.)

The set of all numbers generated from O through use of both principles is Cantor’s “second
(cumulative) number class,” and it evidently cannot be denumerable, for otherwise it could be
extended by application of the second principle. In order to obtain more numbers, Cantor
introduced a third principle that would lead from the second number class to its limit, 2. From
there, one obtains @ + 1,2 + 2,...,0 + w,...,2 + Q,... through use of all three principles. And of
course one need never stop for want of a new principle.

The objects introduced in this way are called ordinal numbers because they serve to describe the
sequential order of elements in any well-ordering. Each nonzero ordinal is classified as a successor
if it is generated by Cantor’s first principle, and otherwise it is a limit ordinal. For ordinals o and
B, a < B if and only if a precedes 8 in the sequence of ordinals. This relation has the well-ordering
property in that any non-empty set of ordinals contains a least element.

VOL. 57, NO. 3, MAY 1984 131

In order to place his ordinal number theory on a mathematically sound basis, Cantor used an
equivalence class approach similar to the familiar one for the reals. Thus in [2] he formally
introduced ordinals as isomorphism classes of well-ordered sets. For a good description of this
approach, see [10]. A quite different approach due to von Neumann, described in [7] and [9], is
preferred by most modern set-theorists. An interesting brief account of Cantor’s life and work is
contained in [4].

The ordinal numbers play a major role in modern set theory, and they are used occasionally in
various branches of mathematics as a vehicle for extended inductive proofs. Applications of
ordinals occur in topology, the area in which undergraduates are most likely to meet them. For
example, Cantor’s second number class with its order topology is a countably compact Hausdorff
space that is not compact. The second number class is especially useful in constructing examples
because every countable subset of the class has its least upper bound in the class ({15], pp. 10, 11,
and 117). Another topological use of the ordinals is the formation of a hierarchy for Borel sets: at
the Oth level of the hierarchy are the basic open sets. Given the ath level, we define the a + 1st
level to contain all sets that are either a countable union of a-level sets or a countable intersection
of a-level sets or the difference of two a-level sets. Finally, if A is a limit ordinal, then the Ath level
contains all sets that belong to any previous level, so A is a sort of gathering-together level. There
are other ways of organizing the Borel sets into a hierarchy, but this way is perhaps the simplest to
describe. As an exercise you can show that only ordinals of the second number class are needed
here, because no new sets are obtained beyond the Qth level ([7], pp. 123, 124).

Ordinals are used in a similar fashion to index more extensive hierarchies of sets and functions
in modern set theory. In the hierarchy of constructible sets ([7], Chapter V), each ordinal belongs
to and represents a certain stage at which sets of a particular complexity are formed. Conse-
quently the ordinals are often viewed as the backbone of the hierarchy, with each ordinal a
vertebra.

Polynomials in «

Let us imagine the ordinals being generated by Cantor’s first two principles and list several of

them at strategically-chosen points so as to keep track of the growth process:
0,1,2,...,0,0+t1,0+2,...,0-2,0-2+1,w-2+2,...,0-3,
w-3+1,0w-34+2,...,0-n,0w-n+1l,0-n+2,...,0%...,
W, 0",

In the sequence indicated here, ordinals written in the form w-n are followed by a sequence
w-n+l,w-n+2,0-n+3, and so on, with w - #n + m understood to mean (w - #) + m. The limit
of this sequence is w - (n+ 1), from whence another sequence leads to w - (n + 2). The ordinals

w,w-2,w-3,... form a denumerable increasing sequence whose limit we call w-w or w
(’f [XXT%
g
/d: [altinN
(‘ o’ Q'J\B
v

132 MATHEMATICS MAGAZINE

Repeating the process, beginning with w? rather than with 0, leads up to w?- 2, and similarly we
obtain w?- 3, w?- 4,..., a sequence whose limit is called w? - w or . If you experiment by writing
out names for some of the other ordinals, the following ideas will probably occur to you.

First, the notation assigned to the typical ordinal is a kind of polynomial in w with positive
integer coefficients, such as w?- 5 + w + 2. (The ordinal mentioned here is quite far down our list.
To reach it, go out to the limit ordinal w? - 5 and start counting off numbers from there as if from
0:1,2,3,...,0, w + 1, @ + 2. The last one counted will be w?- 5+ w + 2.) Second, this process of
generating ordinals can go on indefinitely, but the system of polynomials in w eventually gives out.
For example, the increasing sequence w, w?, *,... has a limit ordinarily called w®, and one can go
on to larger ordinals with progressively more complicated exponential notations, such as

w
w® A

W, WL (*)

What would you call the limit of the sequence indicated in (*)? The usual name is &.

We call any expression of the form w™ -n; + -+ + @™ -n, + n; ., a (finite) polynomial in w,
provided that the coefficients n; and exponents m; are natural numbers, and the exponents are
arranged in decreasing order. Given a polynomial in w that denotes an ordinal 8, you can quickly
determine certain information about B that I shall call “the essential information”:

1. You can tell from the polynomial whether 8 is 0, a successor, or a limit ordinal.

2. If B is a successor, then you can give a polynomial for its immediate predecessor, 8 — 1.

3. If B is a limit ordinal, then you can tell how to write polynomials that name a denumerable
increasing sequence of ordinals with limit B (called a fundamental sequence for §).

To illustrate item 3, suppose that B is w’-5+ w?-4. Then &’-5+ w? 3+ w-n, for n=
1,2,3,..., gives a fundamental sequence for 8. Although we can determine other information
from the polynomial for 8 (such as the polynomial notation for 8’s immediate successor 8 + 1),
we confine our attention to facts that show the genealogy of 8 with respect to Cantor’s principles.

Since there are only countably many polynomials in w, this notation system provides names for
only a countable subset of Cantor’s second number class. We wish to extend the system to a more
comprehensive one that still conveys the essential information about each ordinal. The least
ordinal for which there is no polynomial in w is the ordinal w”. One obvious option for extending
the polynomial system is to continue with notations like w® that allow the use of exponents greater
than or equal to w. This option works fine up to the number ¢, as I suggested earlier. In order to
extend the notation system beyond that point, one can simply admit ¢, as a new symbol and allow
it to be used in polynomial expressions such as g, ey + 1, €9+ 2,...,60 + @,...,€ - 2, and 2+
W54+ w4+ w-14+ 85.

With more explicit information about the polynomial expressions in this extended system, you
could check for yourself that all the essential information is conveyed. But you can readily see that
even this system is subject to extension. The major question formalized and answered in the
remainder of this paper concerns the existence of a maximal ordinal notation system—one that

VOL. 57, NO. 3, MAY 1984 133

conveys the essential information and provides notations for the largest possible set of ordinals.

Maximal systems do exist, although at this point your intuition might strongly suggest
otherwise. Indeed if A is the least ordinal not named by some particular maximal system, could
not the system be extended by adjoining a special symbol to denote A? After we achieve the main
results of this paper, we shall resolve this apparent problem.

Algorithms

Reviewing the essential information that is to be contained in a notation system, we notice the
phrases “you can tell” and “you can give.” The evident intent of these phrases is not that one can
achieve something by means of luck or ingenuity, but rather that anyone who can follow
directions can do it. In other words, there are routine procedures—algorithms, to use the standard
modern term—for accomplishing the stated tasks.

To be a bit more specific about the nature of these algorithms, I ask you. to pick some
general-purpose programming language like BASIC or Pascal—one that you will be able to use or
just imagine using for the rest of this article—and assume that all the algorithms are expressed in
that language. It may seem rather vague to leave this choice open, but the specifics of the language
that you pick will not really matter. Furthermore, it has been established that all standard
programming languages have the same theoretical capability when it comes to expressing
mathematical procedures ([13], p. 114, presents a technical version of this fact. See also Chapters
6-8 of [1]).

There is an important question that should be considered, though: whether every algorithm can
indeed be expressed in terms of a computer program. (We are speaking of algorithms for
manipulating symbols, of course; not algorithms for physical tasks such as tying shoelaces.) An
early version of this question was central to the pioneering work of logicians in the 1930’s who
invented systems of computation equivalent to modern programming languages. Turing machines
and recursive functions are perhaps the most famous of those systems. Since that time, every
proposed procedure that is evidently algorithmic has been shown to be Turing programmable, so
that now virtually all logicians and computer scientists accept the thesis that algorithmic
procedures are precisely the programmable ones. The original version of this thesis is credited to
Church or to Church and Turing jointly. See Chapter 1 of [14] for more discussion of this topic.
The branch of mathematics that has grown out of these considerations is called “recursive
function theory” or “the theory of effective computability,” which I abbreviate as “computability
theory.”

If Fis a computer program and x is an input, then F(x) denotes the output, if any, when F is
run with input x. If there is no output, then F(x) is undefined. If F and G are programs, then
F(x)= G(x) means that either F(x) and G(x) are both defined and equal, or they are both
undefined.

It is traditional and still fairly common practice in computability theory to restrict oneself to
natural numbers as the inputs and outputs of algorithms. Natural numbers are also used to
identify whole algorithms, in much the way that serial numbers identify appliances; sets of natural

134 MATHEMATICS MAGAZINE

numbers are used to provide ordinal notations. Besides being traditional, this natural number
approach ties many ideas together neatly, and so it is the approach we shall follow.

In the first place, then, we shall assume that all programs mentioned in this article are intended
for use with natural number inputs and outputs. Any nonnumerical outputs will be considered the
same as no output at all. Also, “natural number” will be abbreviated as simply “number.”

The decision to use only numbers as ordinal notations may seem too drastic or oversimplifying
until you see how systems like our polynomials in w can be transformed into strictly numerical
systems without any loss of information. One way to transform the polynomials is to consider the
symbols 0,1,2,...,8,9, +,-, and w to be the digits of a base-13 numeration systems. Then, for
instance, the polynomial w?-5+ w-15+2 can be rewritten slightly as w2-5+w-15+2 and
identified with the number that it represents as a base-13 numeral. In this example, the number
would be

12X13104+2x13°+11 X138+ 5 X137+ 10 X 13
+12 X135+ 11 X134+ 13°+5 X132 +10x 13 + 2.

In this way each polynomial is associated with a unique number, and from that number the
original polynomial can be recovered via straightforward arithmetic.

In a similar fashion one can associate a unique number with each line of a computer program
written in your language. (Let 0,1,2,...,8,9, +,... be the symbols of your language and consider
them to be the digits of a numeration system. Then each line can be interpreted as a numeral in
the system.) If L,, L,,...,L, are the lines of a program and n,, n,,...,n, are the corresponding
numbers, then we combme the n,’s into a smgle number e that represents the entire program. One
way to combine them is to let

e=2"-3"2.5" ... ph,

where p is the kth prime number. Given the number e, we can reverse the process by factoring e
into distinct prime powers, observing the exponents, then decoding each exponent into the
program line it represents.

The idea of associating numbers with programs or formulas or any set of formal expressions is
credited to Godel, who used this technique in his famous paper [8] on undecidability. Gédel
number is now a standard term for the numbers that result. In this article, if e is the Godel number
of a computer program, then I shall write { e} to denote that program. If the number e is not the
Godel number of a program, then { e} will denote some particular program (for you to choose)
that never gives an output, regardless of the input. So now every number e represents some
program {e}, and every program is represented by at least one number. I say “at least one”
because the particular program that I-invited you to choose will be {e} for many numbers e.
Furthermore, if you consider a program to be unchanged by certain minor rearrangements, then
many programs will be represented by more than one e.

“Godel number, please?”

VOL. 57, NO. 3, MAY 1984 135

Constructive Ordinal Notation Systems

S. Kleene gave the following definition that unites most of the ideas discussed so far, using the
term “r-system” ([11]). In the definition, L is the set of ordinal notations and f matches the
notations with the ordinals they name, while K, P and Q provide the essential information.

DEFINITION. A constructive ordinal notation system (CONS) is a pair (L, f) in which L is a set
of natural numbers, f is a function from L into the ordinal numbers, and there are programs K, P
and Q having the properties listed below.

1. If f(x)=0, then K(x)=1,
if f(x) is a successor ordinal, then K(x)= 2, and
if f(x) is a limit ordinal, then K(x)= 3.
2. If f(x) is a successor ordinal B+ 1, then P(x) is a notation for the immediate predeces-
sor 3.
3. If f(x) is a limit ordinal A, then Q(x) is the Godel number of a program, and the outputs
{Q(x)H0), { Q(x)}1),{Q(x)}(2),... are notations for a fundamental sequence for A.

EXAMPLE. Let L be the set whose elements are all numbers of the form 2” or 2" -3 for n > 0.
We shall take 1,2,22,2%,... as notations for the finite ordinals 0,1,2,3,..., respectively, and
3,2-3,22.3,23.3,... as notations for w,w+1,w+2, w +3,..., respectively. Consequently the
ordinal-assigning function f is given by

n if x=2"
f(x)_{w+n ifx=2"-3.
The programs K and P should be constructed so as to have the following output features:
1 ifx=1
. on f =2n+1
K(x)={3 ifx=3 P(x)={ ., %x_ it
2 ifx=2"or2"-3fornx>1, 2"-3 ifx=2"7"-3.

We have considerable leeway in constructing K and P, because their behavior on inputs not
belonging to L is irrelevant. For instance, we could construct P so that P(x)=[x/2] for all x,
using the greatest-integer function to insure integer outputs.

Since 3 is the only notation for a limit ordinal (f(3) = w), Q(3) is the only output that must be
carefully planned when you construct program Q for this CONS. Find a program that prints out
the value 2" for each input number », and suppose that e is the Godel number of the program.
Then {e} generates notations for a fundamental sequence for w, and therefore Q could be any
program constructed so that Q(3) =e.

The next example is patterned after the system S; defined by Kleene in [11]. It will turn out to
be a maximal CONS.

EXAMPLE. &= (&, #). I shall describe Land & by indicating for each ordinal number 8 which
numbers belong to #as notations for B, that is, by describing the set # !(B). Zis then the union
of all the nonempty sets & (8).

(i) 0 is the unique notation for 0.
(ii) 2~ is a notation for a + 1 if and only if x is a notation for a.
(ii)) 3¢ is a notation for the limit ordinal A if and only if e is a Gddel number such that
{e}(0),{e}(1),{e}(2),... are notations for a fundamental sequence for A.

In &, then, the finite ordinals 0,1,2,3,4,5,6,... receive as their unique notations the numbers

0,1,2,4,16,26,2@9 (1)

Beginning with w, however, each ordinal has many notations. The notations for w are numbers of

136 MATHEMATICS MAGAZINE

the form 3¢, where { e} is a program whose successive outputs { e }(0),{e}(1),{e}(2),... are an
increasing subsequence of (1). For each of these notations 3¢, the number 2¢” is a notation for
w+ 1, and so on for w + 2, w + 3,... . Likewise, w - 2 has many notations, all of the form 3¢, and
from them we obtain notations for succeeding ordinals.

The following theorem is a companion to the definition of &, for it insures that £ and # are
well defined. The proofs are examples of ordinal induction. They show that the properties
ascribed to ordinal 8 in the theorem are indeed true for all ordinals. The approach is: show that
the property is true for 0; show that the property is true for « + 1, if it is true for «; show that the
property is true for a limit ordinal A, if it is true for all ordinals less than A.

THEOREM. Let 8 be any ordinal. In the definition of &,
(a) the set F~Y(B) is defined, and
(b) FX(B) is disjoint from F () for all 8 + B.

Proof. (a) By part (i) of the definition of &, # *(0) = {0}. Next, assume % '(«) is defined.
Then #~(a + 1) = {2*: x €% !(«)}. Finally, assume that # '(«) is defined for each ordinal «
less than the limit ordinal A. Then # '(A) = {3% {e}(0),{ e }(1), {e}(2),... belong respectively to
sets F Y (ag), F N ay), F 1(a,),..., where ag, ay, a,... is a fundamental sequence for A }.

(b) Clearly #1(0) is disjoint from %~ 1(8) for all § # 0. Next, assume that #'(«) is disjoint
from %~ 1(8) for all 6 # a; we show that % !(a + 1) must also have the disjointness property. Let
F(a+1) and # () have some notation in common. That notation must be of the form 2*,
where x € #~!(«a). Furthermore, § must be a successor ordinal, and x € # (8 —1). Conse-
quently 6 — 1 must equal a by our assumption about % !(«), and so & = a + 1.

Finally, assume that each ordinal less than the limit ordinal A has the disjointness property
described in the theorem. To see that A must also have the property, let # '(A) and % 1(8) have
some notation in common. That notation must be of the form 3¢, where { e }(0), { € }(1),{ € }(2),. ..
are notations for a fundamental sequence for A and also for 8. By assumption, each of the
notations { e }(n) denotes a unique ordinal. Furthermore, it is a set-theoretical fact that the limit
of a fundamental sequence is unique. Therefore it must be the case that § = A.

The last thing we do here, and the simplest, is to verify that #is in fact a CONS. It’s really a
do-it-yourself verification. Using your chosen programming language, you can construct programs
K, P and Q such that

1 ifxisO
K(x)={2 ifxispositive and even
3 otherwise,

P(x)=y ifx=2,
Q(x)=e ifx=3"

Programs with those characteristics can serve as the auxilary programs for the CONS ..

Three theorems from computability theory will be crucial to the proof of % ’s maximality. The
programs mentioned in the first two theorems are of fundamental importance, as is evidenced by
the fact that [13] calls a programming system “acceptable” if and only if it contains them. The
third theorem, the Recursion Theorem, is satisfied by an acceptable programming system, and it
serves to justify program descriptions in which certain outputs are affected by others (the
recursion aspect). To quote [14], p. 179, “It is a deep result in the sense that it provides a method
for handling, with elegance and intellectual economy, constructions that would otherwise require
extensive, complex treatment.”

VOL. 57, NO. 3, MAY 1984 137

Given any two numbers e and n, and possibly considerable patience, one can determine the
program { e }, apply it with input n, and give the output { e }(#) when and if the computation ever
halts. As a matter of fact, this whole process can be carried out by a sort of universal program U
whose existence is stated below in the Enumeration Theorem. The title of the theorem is prompted
by the way U “enumerates” all possible programs { e} as e ranges through the natural numbers.
The program U acts something like a modern day compiler.

ENUMERATION THEOREM. There is a program U such that U(e, n) = {e}(n) for all numbers e
and n. ([13], p. 82; [14], p. 22, ¢, means {e}.)

Another task that can be handled by a special program is that of forming compositions of
given programs.

COMPOSITION THEOREM. There is a program C such that for all numbers z and e, C(z,e) is a
Godel number of a program, and { C(z, e)}(n) = {z }({ e }(n)) for all numbers n. ([13], p. 83; [14], p.
24)

The fact that the next theorem has many useful applications is indicated by the wide variety of
forms in which it has been expressed. The one given here is best suited to the application I shall
make of it with respect to <.

RECURSION THEOREM. If F'is any program using two inputs, then there is a number z, such that
F(zy, x)= {24 }(x) for all numbers x. ([5], p. 176, Theorem 7.4)

This result can be viewed as a fixed-point theorem, if we let F, denote the one-input program
obtained by fixing z as the first input of F. According to the Recursion Theorem, the mapping
{z} — F, has a fixed point.

The Main Theorem

As an exercise you might prove by ordinal induction that the ordinals named by a CONS form
an initial segment of the ordinal numbers. In other words, if 8 receives a notation from (L, f),
then so do all ordinals less than 8. The next result shows that &, defined in our previous section,
is maximal in that it covers all the ordinals named by any other CONS. It even claims the
existence of a program 7 that transforms the notations of a given CONS into corresponding ones
of £.

THEOREM. If (L, f) is a given CONS, then there is a program T such that T(L)C % and
F(T(x))=f(x) for each x in L.

Proof. Let K’, P’ and Q’ be the auxiliary programs of the given CONS. With the definitions of
CONS and #in mind, we will seek a program T with the following features:

0 if x denotes 0
T(x)={ 2T if x denotes a successor (2)
3¢ if x denotes a limit ordinal,

where e is a Godel number, and { e }(n) = T({ Q’(x)}(n)) for all numbers n. The proof that such a
program T (if it exists) would satisfy this theorem is by induction on the ordinal § denoted by x,
and is left as an exercise. Whether or not you perform that exercise, you should inspect the
description of T closely enough to see how it provides %notations for the ordinals named by
(L, f). Also notice that recursion is involved in the second and third lines of (2), where T(x) is
determined by T values at notations for previous ordinals.

The following construction of T shows a typical application of the Recursion Theorem. In
definition (3) below, think of the z’s as candidates for being a Godel number of 7. When we get a
fixed point z, for (3), { z,} will have exactly the properties in (2).

138 MATHEMATICS MAGAZINE

Natural Numbers Ordinal Numbers

® a=f(x)=F(T(x))

S %

The relationships among f, # and T

«

Suppose that F is a program with the following features, where U and C are the programs
mentioned in the Enumeration Theorem and the Composition Theorem.

0 itK'(x)=1
F(z,x)=({2U=FP) ifK’'(x)=2 (3)
3¢ jfK’(x)=3.

A brief inspection of (3) suggests how programs K’, P/, Q’, U and C are used as subroutines in
constructing F.

Now let z, be the special number that is predicted in the Recursion Theorem, and let’s rewrite
the information of (3) in other terms.

0 if x denotes 0

F(zg,x)={20}(x)={ 2(z0)P(x) if x denotes a successor
3¢ if x denotes a limit ordinal,

where e = C(zy, Q’(x)) is a Godel number of {z,} composed with {Q’(x)}. This program {z,}
has all the features described in (2), and so it is the T we are after.

Let A be the least ordinal not provided with a notation by &#. You can check that A would have
to be a limit ordinal. Now, it would seem easy enough to extend by simply adjoining a notation
for A, but since & is maximal, there is presumably no way to make a CONS that extends it.
Suppose we attempt an extension by selecting the number 5 to represent A. Then #(5)=A,
K(5)=3, P(5) is irrelevant, and Q(5)=e where {e} is a program whose outputs name a
fundamental sequence for A. But in that case 3° would already belong to % as a notation for A,
which contradicts our definition of A. There are other strategies that one might use in attempting
an extension (e.g., allow new notations for ordinals less than A so that {e} can approach A by a
new route), but the maximality of & ensures that all of them will fail. % reaches as far into the
transfinite as is possible for a CONS.

Incidentally, the ordinals for which & provides notations are called the constructive ordinals.
Since #is a CONS, they form a countable initial segment of Cantor’s second number class.

Questions of Recursiveness

A final question I want to raise about CONS’ in general and & in particular is a global one
about the nature of the whole set of notations. One requirement that we might have considered
adding to the essential information is “You can tell whether a given expression is an ordinal
notation.” The question here is one of recognizing a notation when you see one. For example, a

VOL. 57, NO. 3, MAY 1984 139

polynomial in w is certainly recognizable as such. On the other hand, it isn’t clear how easily one
could determine whether or not a given number 3¢ is an ordinal notation in <.

Similar questions of recognition occur with regard to Godel numbers for programs. For
example, “Can one recognize whether a given number e is the Godel number of a program?” and
“Can one recognize whether e is the Godel number of a program that gives an output for every
input n?”

To put it another way, we are concerned here with the complexity of a set of numbers, whether
it be a set of ordinal notations or a set of Godel numbers. One way to make the question more
rigorous is to ask whether the given set is recursive, which is to say whether there exists an
algorithm for distinguishing the members of that set from all other numbers. It turns out that for
& or any other maximal CONS, the set of ordinal notations is not recursive, and so in this sense
one must sacrifice recognition in order to have maximality. (This result is a corollary of facts
derived in [12] about the complexity of another maximal CONS called 0.)

Incidentally, the answer to the first Gddel number question I mentioned above depends partly
upon the language (or dialect thereof) that you assume, and partly upon what you require of a
bona fide program. In the case of extremely lean and simple programming systems such as Turing
machines, the answer is “yes” ([5], p. 60, item (11)). The second Godel number question above is
similar to the famous Halting Problem of computability theory and has a negative answer (Section
1.9 of [14], especially Theorem VIII). See [14], Section 2.2, for notes about similar questions in
other branches of mathematics, including Hilbert’s tenth problem. A good up-to-date exposition of
that famous problem is contained in [6].

Recursive Ordinals

The two basic ingredients in our approach to the constructive ordinals have been algorithms, as
embodied in computer programs, and natural numbers. The former give rise to the term
“constructive,” while the latter are a convenient though not really essential choice as ordinal
notations. Another way to combine these ingredients in the study of ordinals is via the
well-ordering concept, as follows. An ordinal is called recursive if it is the order type of an
algorithmic well-ordering of natural numbers. In other words, the ordinal must be order-isomor-
phic to some well-ordering W whose field is a set of natural numbers and whose ordered pairs can
be distinguished from all others by some algorithm.

For example, to show that w + 2 is recursive, one might produce the sequence

2,3,4,5,...,0,1 (4)

in which 0 and 1 follow all the other numbers, then define W to be {(x, y): x precedes y in (4)}
and show by means of a program that W is algorithmic. More generally, it is not hard to show
that the set of all recursive ordinals is a countable (since there are only countably many
algorithms) initial segment of Cantor’s second number class, and the least nonrecursive ordinal is
a limit ordinal.

This recursive ordinal concept is a fairly straightforward constructive analogue of Cantor’s
well-ordering approach to the ordinals, whereas the main thrust of this article has been to
constructivize Cantor’s principles of ordinal generation. Remarkably, these two avenues lead to
the same destination, for the recursive ordinals turn out to be precisely the constructive ordinals
([14], Section 11.8). This result is particularly satisfying because it gives evidence that the set of
constructive ordinals is a natural one, being stable under two quite different characterizations.

Acknowledgement

I wish to thank the editor and a referee for valuable suggestions in the preparation of this
article. I also wish to thank my friend and former teacher and advisor Don Kreider for
introducing me to this subject matter.

140 MATHEMATICS MAGAZINE

References

[1] G. Boolos and R. Jeffrey, Computability and Logic, 2nd ed., Cambridge Univ. Press, 1980.
[2] G. Cantor, Beitrage zur Begrundung der Transfiniten Mengenlehre, Math. Ann., 46 (1895) 481-512 and 49
(1897) 207-246.

[3]

, Contributions to the Founding of the Theory of Transfinite Numbers, Dover, 1947, English

translation with introduction and notes by P. E. B. Jourdain.
[4] W. Dauben, George Cantor and the origins of transfinite set theory, Scientific American, 248 (1983) 122-131.
[5] M. Davis, Computability and Unsolvability, McGraw-Hill, 1958.

(6]

, Hilbert’s tenth problem is solvable, Amer. Math. Monthly, 80 (1973) 233-269.

[7] K. Devlin, Fundamentals of Contemporary Set Theory, Springer-Verlag, 1979.

[8] K. Godel, Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme, I,
Monatshefte fur Mathematik und Physik, 38 (1931) 173-198.

[9] P. Halmos, Naive Set Theory, Van Nostrand, 1960.

[10] E. Kamke, Theory of Sets, Dover, 1950.

[11] S. C. Kleene, On notation for ordinal numbers, J. Symbolic Logic, 3 (1938) 150-155.

(12]

, On the forms of predicates in the theory of constructive ordinals (second paper), Amer. J. Math., 77

(1955) 405-428.
[13] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms, North-Holland, 1978.
[14] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.
[15] S. Willard, General Topology, Addison-Wesley, 1968.

Our Mathematical Alphabet

As I recite the alphabet to one who’s only three
The world of mathematics is opened up to me.

For a, b, c are constants or parameters assigned
And D is a determinant or distance undefined.

The image which e gives to me is one I can’t erase
For it can only mean for me the logarithmic base.

F, G, H are functions with appropriate domain
And i’s a unit vector in the Gauss or complex plane.

J’s a Bessel function and another kind is K.
L’s a linear operator or inductance one could say.

M and N are integers but m could be a mass.
O is the number zero but @’s the empty class.

P and Q give odds that you will win or lose a bet.
R gives correlation of two variables you have met.

I see before me Finstein’s world when I hear § and T’
For they make me think of space and time and relativity.

At this point I'm so deep in thought of time and space and such
That velocity components u, v, w don’t seem much.

Perhaps some day that three-year old may learn when fully grown
Why x, y, z imply for me how much there is unknown.

—M. R. SPIEGEL

VOL. 57, NO. 3, MAY 1984 141

