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The title of Felix Klein’s classic attempt to smooth the discontinuities between secondary and
university mathematics [7] is paraphrased here in the hope of conveying the spirit of this paper
and not for adding any guilt by association. Klein’s objective was to show how university
mathematics could enrich and elucidate secondary material. Turning half-circle from this point
of view, our goal here is to show how undergraduate mathematics can reveal classical results of
advanced plane topology which impinge on undergraduate mathematics but are seldom fully
treated until graduate school, if ever.

At least three examples come to mind. First, most mathematics majors are exposed to Green’s
Theorem, which equates an integral on a simple closed curve to an integral over the region it
bounds. The statement itself implicitly involves the Jordan Curve Theorem which guarantees
that such a curve indeed bounds a unique finite region (see [2] page 243). Secondly, in
elementary calculus the Intermediate Value Theorem is often used to show that f(x)=0 has a
solution between a and b if f(a) <0< f(b) and f is continuous. Elementary coordinate changes
show that this is equivalent to existence of a solution of an equation g(x)=x (a “fixed point” of
g) where g maps an interval into itself. This is the one-dimensional Brouwer Fixed Point
Theorem, a special instance of more general fixed point theorems that are useful for showing the
existence of solutions to differential equations, economic models, etc. Finally, the implicit
function theorem, necessary for justifying implicit differentiation, entails some form of
Brouwer’s Invariance of Domain Theorem (see footnote on page 281 of [4]). Students need not
be burdened by complete proofs of all such topological preliminaries, but for those interested
they should be more accessible.

Perhaps the simplest complete treatment of the classical results discussed here is in M. H. A.
Newman’s book [8]. The very last section of Hocking and Young [6] gives a modern version of
J. W. Alexander’s combinatorial approach [1] to some of these topics. However, each of these
sources involve at least a modicum of algebraic topology. The approach taken here uses none,
but could be used to motivate an introduction to algebraic topology. Little more is used than the
barest facts about continuous functions and their behavior with regard to closed, compact
(closed bounded) and connected sets. Most references are for the record (or the very curious),
not for suggested reading, as many are relatively inaccessible. No apology is offered as that
situation is the motivation for this paper!

The author wishes to acknowledge a considerable debt to Albrecht Dold for his excellent
paper [5] which, somewhat in the spirit of Klein, was presented at a conference fostering
interaction between universities and “Hochschulen” in Germany. Many of the basic ideas in
what follows originated there and inspired this attempt to publicize and expand on his results.
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A Fundamental Result

A great deal of important topology of n-dimension Euclidean space E” can be derived with
surprising ease from what is sometimes called Alexander’s Addition Theorem. A special case,
sufficient for the topology of E2, can be established by a simple parity (even-odd) argument
similar to that used by Euler to solve the Konigsberg bridge problem. For simplicity we establish
some standard terminology and notation.

We call a continuous function a map. If f: /—X is a map of an interval I with ends a, b, then
the image, f(I), is called a path in X from f(a) to f(b). Observe that the continuous image of a
path is again a path. A map f is called an embedding or homeomorphism onto its image if it is
1—1 (i.e., its inverse f ~! exists) and f~! is a map. Let R be the square region in E? with corners
(%1, =1). The region R has a square boundary S=S,U S, where S, is the upper and S, the
lower half, each being a path joining (—1,0) to (1,0). We can now state and prove our key
theorem which says, roughly, that if a path from x to y missing one closed set can be
continuously deformed into one missing a second closed set without ever touching a point in
both sets, then some path from x to y misses both sets.

ALEXANDER ADDITION THEOREM. For i=1,2, suppose C; is closed in a space X, P; is a path in
X—C,; from x to y and F:R-»X—(C,NC,) is a map with F(S;)=P,. Then some path F(P) in
X —(CyU G,y) joins x to y.

Proof. A picture of the square domain R of F appears in FIGURE 1; the map F is the

continuous deformation referred to in the description of the theorem. Note first that F~!(C,)
has no points in common with F ~!(C,) or S,. Since these sets are closed, R can be divided into
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Pick a path P so F(P) misses C,U C,.
FIGURE 1.

finitely many squares by horizontal and vertical lines (including the axes) so no square of R
meets both F~!(C,) and F ~!(C,)U S,. Let K be the collection of squares meeting the latter and
B the set of edges of the little squares lying on exactly one square of K. Then only an even
number (two or four) of such edges have a common point (see FIGURE 2). All of S, is in B so
B— 8, has finitely many edges, with an even number meeting at each endpoint except for the
ends, (*1,0), of S,. Starting at (—1,0), we can trace out a path P along edges of B— S, which
must terminate at (1,0) since the even order condition assures that any other endpoint arrived at
can be left by a different edge (if no edge is retraced, the path must indeed terminate). Each
edge of P is an edge of a square of K meeting F~!(C,)U S, and not F~Y(C,), so P misses
F~Y(C,). To show P also misses F~!(C,), note that each edge e of P lies in B—S,. Thus if
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Edges ¢; of B meet by twos or fours.
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FIGURE 2.

eC S=8,US,, then ec S, and F(e)C F(S,)=P,CX—C,. If ez S, then e lies on two squares of
R, both of which belong to K if e meets F~'(C,), so then e could not be in B. Thus P misses
F~Y(C)) and F(P) is the desired path.

Before going on let us see what we have really accomplished. Suppose R is any collection of
square regions which intersect, if at all, in a common edge or vertex (call such an R a surface).
Let S, and S, be paths in R meeting only at their ends p, ¢ (replacing (* 1,0) above). If each S
is a union of odd order edges of R (edges lying on an odd number of squares of R) and no other
such edge meets F ~!(C, U C,), then the Alexander Addition Theorem still holds for surfaces. Only
minor changes are required in the proof: K is the collection of squares meeting F ~'(C,)U S, as
before and B.is the set of odd order edges of K. Each vertex of B has even order. That is, if
e,...,e, are the edges of B meeting at a vertex v, then m is even. To see this, let e},...,e, be the
remaining edges of K meeting at v. If we count the two edges of each square having v as a
vertex, then the total count is even. But each ¢; is counted 2n;+ 1 times (being of odd order) and
¢/ is counted 2n/ times, so Z7,(2n;+ 1)+ 3% 2n/ =m+2(2Te n;+ 2 1n)) is even and m must
be even. The path P from p to g is constructed as before and the only other change needed is
editorial (in the next to last sentence of the proof change “two” to “an even number of” and
“both” to “all”).

Extension to higher dimensions is analogous. Suppose, for example, that R is the cubical
region in E? with corners (x1,£1,£1) and S=S,U S, its boundary surface where S is the
upper and S, the lower half. Instead of paths spanning the points x and y, the P;= F(S;) are now
images of the surfaces S; each of whose boundaries is S;N .S,. We say S; spans S;N S,. Slice up
R parallel to coordinate planes and define K and B as before (except K is a collection of cubes,
B is a set of odd order faces of K and we now seek a surface P spanning the square S, N S, in the
sense that S;N .S, is the union of the odd order edges of P). Counting as in our discussion of
surfaces, we find that every edge of B— S, except for those in S;N S, has even order in B—S,.
Remove (or blacken) a face of B— S, having an odd order edge and continue doing so as long as
what is left (unblackened) of B— S, has a face with an odd order edge (i.e., an edge lying on an
odd number of unblackened faces of B—S,). When there are none left, the black faces form a
surface P C B— S, whose odd order edges (those on an odd number of black faces) form S;N S,
and whose image F(P) misses C;U C,.

Three Important Applications

We now apply the Alexander Addition Theorem to get three famous results. In the first
case choose for the space X of the theorem the set S (the boundary of the square region R of
FIGURE 1), then choose C, and C, to be the bottom and top edges of R respectively and take
P,=S,. If there is a map F: R—X —(C,N C,)= X, which is the identity when restricted to X C R,
then the Alexander Addition Theorem gives a path F(P) joining (*+1,0) in X —(C,;U C,), which
is impossible. Thus no such extension of the identity (called a retraction of R to X =S) exists.
We state this as a theorem.

No RETRACTION THEOREM. No map of R to S maps each point of S to itself.
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In short, S is not a retract of R. It is in fact an easy exercise to show that the same is true for
any disk (space homeomorphic to R). For example, the unit circle C = {(x,y)|x?+y?=1} is not
a retract of the unit disk D={(x,y)|x2+y2< 1}. We also leave as an exercise the proof of the
No Retraction Theorem for surfaces spanning S and for higher dimensions.

Another variant of the Intermediate Value Theorem of calculus says that a map of an interval
into the reals which maps the endpoints onto themselves takes on every value in the interval. A
two-dimensional version of this follows from the No Retraction Theorem. Also, as in one-
dimension, Brouwer’s Fixed Point Theorem in two dimensions (every map of a disk into itself
has a fixed point) is an easy consequence.

INTERMEDIATE VALUE THEOREM. If f maps the unit disk D into E? and is the identity on the
unit circle C, then D C (D), that is, f takes on every “value” in D.

Proof. If p€ D — f(D), then f followed by projection from p to C retracts D to C. But, as we
Jjust observed, C is not a retract of D.

BROUWER FIXED POINT THEOREM. If f maps the unit disk D into E?, then either f(p)=p for
some point p in D or f(p)=MAp for some p on the unit circle C and A\> 1. Thus if f(D)C D or even
AC)YC D, then f has a fixed point.

Proof. Define, as usual, ||of|=yxi+x} if v=(x;,x,) in E? then set g(v)=20v—fQuv) if
lloll <1/2 and g(v)=(v/|lvl)—2(1—|lol)f(v/Ilvl) if 1/2<|lv|]|<1. Then g:D—E? is a map
which is the identity on C and by the Intermediate Value Theorem g(v)=(0,0) for some v in
D—C.If ||o|| £ 1/2, f2v)=2v and p =20 is the required point of D. If ||o||>1/2, f(v/|0|)=(2
=2||lv|)"/||v]|=Av/||v|| and p=v/|v| is the required point of C since ||v|>1/2 implies
A=2-2o)"'> 1.

Connectivity and Components

At this point we have successfully investigated the fixed point theorem which is implicit in the
intermediate value theorem. The topological ideas implicit in Green’s Theorem and the implicit
function theorem require some further development. We will proceed next to a study of the
Jordan Curve Theorem which is buried in Green’s Theorem. The Jordan Curve Theorem, which
we shall state precisely and prove later, says that a simple closed curve divides the plane into
exactly two pieces, one inside and one outside. The appropriate topological ideas with which to
study “pieces” are-the concepts of connectedness and components. Qur purpose in this section is
to present and develop these ideas.

We begin by noting that the nonexistence of the function F in the Alexander Addition
Theorem just yielded three important results with marvelous ease. Our study of connectedness
and components will show what can be done when such maps F do exist. It turns out that the
hypotheses of the Alexander Addition Theorem are commonly satisfied. Each P, is a continuous
image of an interval [a,b] which is homeomorphic to S; so a map of S=S,U S, taking S; to P,
always exists. However, extending this to a map F of R into X is the problem. Existence of such
extensions is important for many other reasons in topology and analysis, so we codify this with a
definition. If every map of § into a space extends to a map of R, we call the space simply
connected. Thus the Alexander Addition Theorem applies whenever X — C;N C, is simply
connected. (Even when it is not, our comments on surfaces may apply.) In particular the
Alexander Addition Theorem applies if X — C,N C, is “starlike”, i.e., homeomorphic to a set
Y C E” having a point p joinable to every point y € Y by a straight line segment py C Y. For if
F:S—Y is a map, it extends to a map of R into Y which takes the origin O to p and each
segment Og, g € S, linearly onto the segment pF(q). Note that by the No Retraction Theorem, S
itself is not simply connected, since an extension of the identity would be a retraction.

Turning our attention to the complementary open sets U;= X — C;, we can discover a simple
and useful method for finding and counting the “connected parts” of U;N U,. Euclidean spaces
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have arbitrarily small neighborhoods whose points are joined by paths within the neighborhood.
For such locally path connected spaces, an open set U is connected iff it is path connected, i.e., iff
any two points of U are ends of a path in U. A component (“connected part”) of an open set V is
the set of all points of ¥ joinable to a given point by a path in V.

CoMPONENTS OF INTERSECTIONS THEOREM. Let C, and C, be closed in a space X and let
U=X—-C. If Uu U, is both simply and locally path connected, then each component of U,N U,
is the intersection of a component of U, and one of U,.

Proof. If xE K, a component of U, N U,, and K; is the component of U, containing x, then
K C KN K, since a path joining y to x in U;N U, does so in U, and U, as well. Conversely, if
YEK,NK,, then y EK; so U;=X — C; contains a path P, joining the points x, y of U;N Up,=X —
(C1U Cy). By the Alexander Addition Theorem there is a path F(P) in X —(C,uU Cy))= U,Nn U,
between x and y. But then y €K and K, N K, C K which means K, N K, = K. This completes the
proof.

Let k(U) denote the number of components of U. The result just proved implies, as we show
next, the very useful formula:

k(U))+k(U)=k(Uu Up))+ k(U N Uy). )

The observant student of mathematics will notice this same formula in many other contexts, e.g., '
where k(U) denotes cardinality of finite sets, dimension of linear subspaces, measure, Euler
characteristic (Vertices — Edges + Faces), etc.

CoUNTING COMPONENTS THEOREM. The formula k(U,)+ k(Uy)=k(U,U Uy)+ k(U N U,)
holds if the U, are open and U,U U, is both simply and locally path connected.

Proof. Let Wi,...,W, be a list of all components of U, and U, and p,, the number of
intersecting pairs from each initial list W,..., W,,. Then k(U,)+ k(U,)=n and, by the Compo-
nents of Intersections Theorem, k(U; N U,)=p, since each nonempty W;N W, is a component of
U,n U, as well as of any subset of U; N U, containing W; N W,. Thus our formula can be written
k(U 1W;))=n—p,. To prove it, we use induction on n. Since k(W,)=1=1—p, is trivial, we
assume k(UL \W;)=m—p,, for 1 <m<n. By definition of p,, W, ., meets p,,,,—p,, of the
components W,,...,W,,. If no component K of U7, W, contains two (or more) of these
Pm+1—DPm W, then W, | meets exactly p,,,, —p,, such components K and unites them into one
component of ULY'W; so that k(UTZy'W)=(m—p,)—(Pms1—Pm)+1=(m+1)=p,,, com-
pleting the proof. But a component K of UL, W; must lie in a component K’ of Uj=
Uitm+1W;- The Components of Intersections Theorem applies to U; and U;= W, since
U{u U;=U,U U, and the U/ are open because the components W; of open locally path
connected sets are open. So, unless it is empty, K'N U; is a component of U/N Uj. Thus
W,.+1= U; meets only one W, in K’, hence only one in K C K’ (at most). So our formula is
established.

The n-sphere S" is the set of points in E”*! a unit distance from the origin: S° is a two-point
set, ! a circle, $? an ordinary sphere, etc. Path connectedness is often called 0-connectedness
since it requires that each map of S° extend to a map of the interval [—1,1] spanning S°.
Somewhat more general than simple connectedness is the property of 1-connectedness which
requires that each map of a square boundary, or equivalently of S, extend to a surface spanning
S'!. Extension to 2-connected and beyond is more complex since there are boundary surfaces
other than the 2-sphere (e.g., torus, double torus, etc.). There is an interesting and important
relation between this “dimensional” connectedness of a suitable set and of its complement in E”
or S” called Alexander’s Duality Theorem. Our final application of the Alexander Addition
Theorem is the proof of this relation for an arc in $2 An arc is 0- and 1-connected (it is starlike)
and the Alexander Duality Theorem amounts to saying the same is true for its complement. This
result implies that the addition formula (1) is valid for open sets U, S? if the complement of
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U,u U, is an arc. This can be seen by using our remarks about surfaces in place of the
Alexander Addition Theorem to extend our two results about components. The same is true
with E2 in place of S? since adding a point “at infinity” to E? gives S? and removing a point
from S2 does not affect connectedness of open sets.

ALEXANDER DUALITY THEOREM. The complement of an arc in the plane or 2-sphere is path
connected.

Proof. From the comment preceding the theorem it suffices to prove it for S2%, so let
A=h({—1,1]) be an arc embedded in S? by a homeomorphism 4. Two points x, y of S2— 4 are
joined by a path P in S2— h(s) for any s in [— 1, 1] since S%— A(s) is homeomorphic to E2. In
fact, since A~!(P) is a closed set in [—1,1] not containing s, P misses A([r,t]) for some r <s <t
with 7 <s unless s= — 1, and s <t unless s = 1. Thus if we choose s to be the least upper bound of
all numbers n in [—1,1] such that A([ —1,n]) misses a path from x to y, then s > —1 and some
path P; from x to y misses C, = h([r,?]) where r <s <t. By our choice of s there is a path P, from
x to y missing C,=h([—1,7]). If X=S2, then X—(C,N C)=S2—h(r) and F:R->X—(C,N Cy)
with F(S;)= P, for i=1,2 exists by the construction at the end of the paragraph following the
proof of Brouwer’s Fixed Point Theorem (S2— A(r), being homeomorphic to E? is starlike).
Thus the Alexander Addition Theorem gives a path from x to y in X—(C;uC,)=S8*—
h([— 1,£]). But if s < 1, then s < contrary to the choice of s, so s=1=¢ and §2—h(—1,t])=S?
— A is path (or 0-) connected.

The same pattern of proof, using the Alexander Addition Theorem in higher dimensions,
shows that the complement of an arc 4 in $? is also 1-connected. Instead of joining given points
x, y in §2— A by paths, we extend a given map of the square S,N S, into S2— A4 to a surface
spanning S; N S,. The P and P, in the preceding proof are now the images of these surfaces. All
extensions needed to complete the proof in the same pattern exist by the construction following
Brouwer’s Fixed Point Theorem, since, as noted before, $2 minus a point is starlike.

Indeed, the same type argument proves duality for a disk D= H(R) in §2 (or E?) where H is
a homeomorphism and R is the square region in E? with corners (+1, £ 1). For example, to
show S2— D is connected, observe that for — 1 <s < 1, instead of a point A(s) in the above proof,
we have an arc h(s)= H(sX[—1,1]). But duality for an arc in S? guarantees the extensions
needed to complete the proof as before using the Alexander Addition Theorem for surfaces.

The Jordan Curve Theorem

Mathematicians and others long assumed that a simple closed curve (the embedding of a
circle) in the plane separates the plane, as does a circle, into two connected pieces and is the
boundary of each. In 1865 the German mathematician, Carl Neumann, in a book on integration
asked for an explicit proof of this. Over twenty years later in 1887 a French mathematician,
Camille Jordan, published a “proof” which was not valid even for a simple closed polygon! We
commemorate this pioneering but shaky mathematics by continuing to call what he attempted to
prove the Jordan Curve Theorem. It was almost another twenty years before the American
topologist Oswald Veblen gave a complete valid proof in 1905. The Dutch mathematician
L. E. J. Brouwer extended it to n-dimensional space in 1912 and in 1916 Alexander announced
his Duality Theorem which extended it further.

The solution of the original plane problem is made simple by the Alexander Duality Theorem
and the formula (1). It amounts to applying this formula to cases where U;=E2— C and U, is
any connected open set known to be separated into two components by the curve C. (Dold’s
proof, mentioned in the introduction, is based on the assumption that the entire curve C lies in
such a set U,. Thus Dold shows a global bisection of space assuming a global bisection of a
neighborhood of the curve whereas we obtain a global bisection of space by using a known local
bisection by certain auxiliary curves.)
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JORDAN CURVE THEOREM. If C is a simple closed curve in the plane E2, then E*— C has two
components and C is the boundary of each.

Proof. If K is a component of E2— C and U an open set containing a point x of C, then
C— U is contained in a subarc 4 of C. By the Alexander Duality Theorem, E2— 4 is connected
and so contains a path P=f([—1,1]) from x=f(—1) to a point y=f(1) of K. The closed set
f71(C) has a maximum m, —1<m <1 and f(m)€E U so by continuity some interval about m
maps into U. If n is a point of this interval and n>m, then f(n)€U and f([n,1]) is a path in

— C joining y to f(n). Thus f(n)E K and x is'in the closure, K, of K. Since components of
— C are open, C= K— K is the boundary of K.

FIGURE 3.

To prove separation, let S be a circle containing at least two points p, ¢ of C and whose
exterior U contains no point of C (see FIGURE 3). One can imagine how S may be found by
thinking of shrinking a circle inside which the bounded set C lies until it first touches C at a
point p and further shrinking it with p fixed until it touches a second point ¢g. The existence of p
and ¢ is assured since C is closed. Let 4, (i=1,2) be the arcs of C with ends p and ¢, L the part
of tke line through p and g not lying between them and L;=LuyU 4;. Three calculations of
component numbers complete the proof:

() If U,=U and U,=E?—L, then U,UU,=E?— A4, and, as observed prior to the
Alexander Duality Theorem, our component formula (1) applies giving k(E2— L)=k(E*>—4,)
+k(U-L)—k(U)=1+2-1=2.

(i) If U;=E?- L, then U,U U,=E?— L is simply and locally path connected since it is
open and starlike (in fact it is homeomorphic to E?2). Thus by the Counting Components

Theorem, k(E2 —Ly)=k(U;N U2) k(E*—L)+k(E*- L2)—k(E2—L)=2+2—1=3.
@) If U= C and U,=E?-L,, then U,U U,=E?*—A4,. As in (i), the component
formula (1) apphes and gives k(E2— C)=k(E*>—A4,)+ k(E2 L,—L)—k(E*~L)=1+4+3-2=

2 as required.

Proving the Jordan Curve Theorem seems to require knowing that an arc does not separate
the plane. Thus, although there are other proofs at least as elementary (see pp. 100—104 of [10]),
some form of the Alexander Duality Theorem appears to be unavoidable and it was this that
caused the most complication in the proof given here. Most of the complication and clutter is
caused by the necessity of extensions to surfaces and higher dimensions which at the same time
suggest the methods may generalize to any finite dimension. In fact this is so, and an oft-quoted
principle of George A. Polya is at work here: a more general problem may have a simpler
solution. The same methods, devoid of the necessity for extensions to surfaces and higher
dimensions, are used in [9] to prove all these results in n-dimensional space. However, the latter
is less intuitive, of course, since it is difficult to visualize beyond three dimensions.
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Many applications of the Jordan Curve Theorem require only the polygonal case for which
an easy intuitive proof can be found in [3]. An even simpler and rigorous proof (using induction
on the number of edges) can be given if the edges are all horizontal or vertical. Try it!

The Invariance of Dimension

There are other important and easy applications.of the Alexander Addition Theorem. For
example, a half-dozen properties known as Phragmen-Brouwer Properties (see p. 359 of [6]) are
easily verified for spaces which are both simply and locally path connected. We close by
showing how the Jordan Curve Theorem and the Alexander Duality Theorem imply invariance
of domain and dimension.

The inverse image of an open set with respect to any map is open (in fact this is often taken
as the definition of continuity) and the image of an open set under a homeomorphism is open
(since its inverse is continuous) but not necessarily under an embedding (homeomorphism with a
subset). For example, no open subset of the reals maps onto an open set in £2 under the natural
embedding of the reals onto the x,-axis. However, Euclidean spaces are somewhat unusual in
that any embedding of an open subset of E” (or S$”) in E” (or S") is open. This is known as the
Invariance of Domain of Euclidean spaces. Besides useful consequences in analysis, it has the
reassuring topological consequence, called Invariance of Dimension, that E™ is not homeomor-
phic to E” if m4n. This fact, first proved by Brouwer in 1911, was especially reassuring then
because in 1890 Giuseppe Peano had destroyed the then current concept of dimension by
showing that a 2-dimensional square disk is the continuous image of a 1-dimensional interval (in
fact, any n-dimensional disk is) and previously Georg Cantor had shown that the points of a line
can be put in 1-1 correspondence with those of a plane! The 2-dimensional version of this
invariance is easily proved using the Jordan Curve Theorem and the Alexander Duality
Theorem for disks.

INVARIANCE OF DOMAIN THEOREM. If U is open in E* and h embeds U in E2, then h(U) is
open.

Proof. If p is a point of U, then U contains a circle C about p along with its interior 7, It
suffices to show that A(I) is open. By the Jordan Curve Theorem, E2— h(C) has two (open)
components. Let V" be the one containing h(p) and W the other. Then the connected set A(7) lies
in ¥, and W contains no point of the disk A(C U I). The complement of this disk contains W, is
contained in V' U W, is connected by the Alexander Duality Theorem for disks, and so must
equal W. Then V'=h(I) and h(I) is open.

INVARIANCE OF DIMENSION THEOREM. The real line E' is not homeomorphic to the plane E2.

Proof. If g: E25E" is a homeomorphism and f: E'— E? is the natural embedding of E! onto
the x,-axis of E2, then fog=h embeds the open set U= E? and h(U) is not open, contrary to the
Invariance of Domain Theorem.

Thus a 1-1 map of E' onto E2 must have a discontinuous inverse. In fact such a map cannot
exist but a slightly more sophisticated argument is required. In summary, Cantor exhibited a 1-1
function from E! onto E2. Peano’s example yields a continuous function from E! onto E2, but
no such function can be both 1-1 and continuous.

A portion of this paper was presented at the April, 1975, meeting of the MAA (Iowa Section) at Iowa State
University. Research supported in part by Iowa State University SHRI funds. The author appreciates the interest
and assistance of the editors in this paper.
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