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Some Unsolved Problems in Plane Geometry

A collection of simply stated problems
that deserve equally simple solutions.

Vicror Kiee
University of Washington
Seattle, WA 98195

If S(?) is the number of mathematical problems that have been solved up to time ¢, and U(¢)
is the number that have been explicitly considered but still remain unsolved, then probably
U(t)/ S(t)—>o0 as t—oo. Yet most mathematical expositions concentrate on the denominator
and ignore the much larger numerator. I like to redress the balance by talking or writing about
unsolved problems, especially ones that have immediate intuitive appeal and can be understood
with little background. The problems presented here are all concerned with the geometry of the
Euclidean plane, which is almost as fertile a source of such problems as number theory and
combinatorics. The problems are not new (one dates from 1916) but probably will be new to
some readers. It will be interesting to see how many years pass before the problems are solved.

This paper is divided into two parts. In the first part, the problems are presented and some
background information is provided. I hope this part will be accessible to all readers of the
Magazine. The second part contains references and additional comments which are more
advanced than the material of the first part. Nevertheless, it should be accessible to most
readers.

I should emphasize that there is a tremendous number and variety of “elementary” unsolved
problems in plane geometry. The small sample presented here consists of the ones that I find
most appealing. This paper is an adaptation of [KH]. It is dedicated to Hugo Hadwiger for his
seventieth birthday and to Paul Erd6s for his sixty-fifth. The writings of Hadwiger and of Erdds
are ideal sources of additional problems.

Problems
1. A colorful problem

With only two colors, you can paint an entire line so that no two points at unit distance
receive the same color. Simply use red for each half-open interval [n,n+ 1[ when n is even, and
white when » is odd. That’s easy to do mathematically. However, with real paint it would be
difficult to paint half-open rather than closed unit intervals, and to do the latter would produce
two points at unit distance with the same color. Even with real paint, three colors suffice. For
each integer n, use red for the half-open interval [6n/3,(6n+2)/3[, white for [(6rn+2)/3,
(6n+4)/3[, and blue for [(6n+4)/3, (6n+6)/3[. A little sloppiness at ends of the interval
doesn’t matter, because no number in the interval ]12/3,4/3[ is realized as the distance between
two points that receive the same color.

What happens in the Euclidean plane E2? That is:
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(A) If all the points of the plane are to be painted so that no two points at unit
distance receive the same color, what is the minimum number c¢ of colors that
can be used?

Though the exact value of ¢ is unknown, it’s easy to see 4 <c¢ <7. To prove ¢ >4, we show
three colors are not sufficient, and to prove ¢ <7, we tell how to paint the plane in seven colors
so that no two points at unit distance receive the same color.

Suppose the plane is painted in three colors—say red, white and blue—so that no two points
at unit distance receive the same color. For an arbitrary red point r, consider the configuration
shown in FIGURE 1. The triangles are equilateral with side length 1, so the other two vertices of
r’s triangle are colored differently from r and from each other. Thus one is white and one blue,
whence 7 is red. By rotating the rhombus about r, we obtain an entire circle of red points . The
circle includes two points at unit distance, and the resulting contradiction shows ¢ > 4.

For an upper bound on ¢, consider the tessellation of the plane by regular hexagons of side
length 2/5. Paint one hexagon with color 7, and its six neighbors with colors 1 through 6. As the
entire plane is tessellated by translates of this configuration, we can simply extend the coloring
“by translation” (see FIGURE 2) and it turns out that no two points at unit distance receive the
same color. Thus ¢ < 7. We know, then, that ¢ has one of the four values 4, 5, 6 and 7. But which
one?

b

FIGURE 1.

2. A modern way of squaring the circle?

The ancient Greek problem required the construction, for a given circle C, of a square of the
same area as C. “Construction” meant that, starting from a line segment whose length is equal
to the radius of C, one should use ruler and compass to produce a side of a square whose area is
that of C. Starting from a segment of unit length, one of length #!/2 would be produced. As is
now well known, that can’t be done with ruler and compass. However, the problem is unsolved
(rather than provably unsolvable) for some other interpretations of “construction”.

Two subsets X and Y of a Euclidean space are said to be equivalent by finite decomposition if
X can be partitioned into a finite number of sets X},..., X, and Y into sets Y;,..., Y, such that X;
is congruent to Y; for 1<i<n. Though now more than a half-century old, the following is
sometimes called the “modern form of the problem of squaring the circle”:

(B) Can a circular region and a square region be equivalent by finite decomposi-
tion?
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It is known that if a circular and a square region are equivalent then they have the same area,
even though the individual sets in the partitions are not required to be “nice” or even to have
area in the usual sense. Thus, the situation in E? contrasts sharply with that in higher
dimensions. In E? for d >3, any two sets that are bounded and have interior points are
equivalent by finite decomposition. This is the Banach-Tarski “paradox”, which is discussed
briefly in the second half of the paper. It provides a striking illustration of the fact that when we
make a mathematical definition based on the apparent behavior of familiar objects, we may
inadvertently create mathematical “monsters” whose behavior defies intuition.

3. Equichordal points

A chord of a plane region R is a segment that joins two boundary points of R. A point p of R
is an equichordal point if all chords through it are of the same length. For example, the center of
a circle is an equichordal point. You might think that only a circular region could have an
equichordal point, but that’s far from the case. Consider a drawing arm as shown in FIGURE 3,
with a marker at each end of the arm. The arm pivots at the point p and is free to move back
and forth through p. If we start with the ends of the arm at points a and b and move one end
along a “reasonable” arc from a to b (one that doesn’t get too far from p and that satisfies some
other mild conditions), then the two ends together will draw the boundary of a region having p
as an equichordal point. In particular, as shown in FIGURE 3, a noncircular convex region may
have an equichordal point. (Recall that a region is convex if it contains each segment joining two
of its points.)

It is known that a plane region cannot have three equichordal points, but the following
problem was posed in 1916 and is still unsettled:

(C) Can a plane convex region have two equichordal points?

The problem is also open for nonconvex regions, though in that case some fine points in the
definition of “region” and “equichordal point” become relevant. Details are given in the second
half of this paper.

A point p of a plane region is an equichordal point if and only if the sum of distances
8(x,p)+ 8(y,p) is constant for all chords [x,y] through p. Analogously, call p an equireciprocal
point if the sum 8(x,p) '+ 8(y,p) ! is constant. The foci of an ellipse are equireciprocal points,
but the following problem is open:

(D) Can a nonelliptical plane convex region have two equireciprocal points?

4. A tale of two problems

In considering the problems of this paper, it is natural to wonder whether anyone has a
reasonable chance of solving them. I can’t answer that, except to say that problems of this sort
are great equalizers among mathematicians, for solutions usually depend on clever ideas rather
than extensive knowledge of theory or development of complicated mathematical machinery.

If age is a reliable guide, the equichordal problem should be the most difficult one considered
here, for it is the oldest. However, unsolved problems are by their nature unpredictable, and that
may be especially true of ones that are easily stated. By way of illustration, let’s consider two
problems from the last century that long appeared to be very difficult despite their elementary
nature.

The famous four-color problem, which originated in 1852, asks whether every planar map can
be painted in four colors so that no two countries with a common boundary arc receive the same
color. The problem was first mentioned in print in 1878, and the sufficiency of five colors was
soon demonstrated. However, for decades, it was unknown whether any planar map really
required five colors. This and Fermat’s problem were the two most famous unsolved problems
in mathematics. Finally, in 1976, it was proved that four colors suffice. A considerable amount
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FIGURE 4. \

FIGURE 3.

of mathematical machinery was involved, but much of it had been available since 1880. The
proof combined refinements of the machinery with many hours of electronic computation. Thus,
the four-color problem has been solved, but there is still no easy solution.

The following problem was posed in 1893: If S is a finite set of points in the plane, not all
collinear, must there exist an ordinary line for S? (An ordinary line is one that contains exactly
two points of S.) The problem still appeared difficult forty years later, and was sometimes
mentioned along with the four-color problem as an apparently impossible though easily stated
problem. Yet now, thanks to a clever idea, it appears to be almost trivial. The solution is given in
the next paragraph.

Since the points of S are not all collinear, it is possible to choose a point p of S and a line L
that misses p but contains at least two other points of S. Since S is finite, there are only finitely
many such choices and hence there is one for which the distance from p to L is minimum. For
any such minimizing choice, the line L is ordinary. Otherwise, at least three points of S are on L
and at least two of them are on the same side of the foot f of the perpendicular from p to L. If x
and y are two such points and x is closer to f, the distance from x to the line py is less than the
distance from p to the line L= xy. That contradicts the minimizing property of the pair (p, L).
(See FIGURE 4)

It will be interesting to see whether any of the open problems from this paper is eventually
solved in such an elegant manner. In working on the problems, one may hope to find the clever
idea that leads to such a solution. However, there is also the danger that after one has spent
months in a futile attack on a problem, someone else may find a short and elegant solution!

5. Reflections on reflections

Suppose you live in a 2-dimensional room whose walls form a simple closed polygon, and
each wall is a mirror. Is there necessarily a point from which a single light source will illuminate
the entire room, using reflected rays as well as direct rays? Must every point of the room have
this property? More briefly:

(E) Is every polygonal plane region illuminable from at least one of its points?
From each of its points?

These problems are unsolved, but there are nonpolygonal regions for which the answers are
negative. One is shown in FIGURE 5. The upper elliptical arc has foci at p and p’, the lower one
at ¢ and ¢’. The broken lines are the major axes of the ellipses. You’ll recall that a light ray
issuing from one focus of an ellipse is immediately reflected through the other focus; from this it
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follows that any ray crossing the major axis between the foci is immediately reflected between
the foci. Thus, in the figure, a ray that issues from any point above {resp. below) the lower axis
cannot reach the areas marked B{resp. 4). Though this smooth, nonpolygonal region R is not
illuminable from any point, the problem remains open for polygonal regions, even for those very
close to the region of FIGURE 5.

A convex region is of course illuminable from each of its points, even without using
reflections. But what happens when attention is restricted to a single ray rather than (as in the
illumination problem) all rays issuing from a particular point? Of course, a single ray cannot
cover all the points of the region, but it may come arbitrarily close to each point—in topological
parlance, it may be dense. For example, if the region is the square shown in FIGURE 6, then every

FIGURE 5. FIGURE 6.

ray with rational slope is closed, like the one shown in the figure, but every ray with irrational
slope is dense. There are many unsolved problems concerning the behavior of individual light
rays in convex regions, though they are usually stated in terms of billiard ball paths rather than
light rays. Perhaps the simplest is the following:

(F) Does every triangular region admit a dense light ray?

An affirmative answer is known for triangles (in fact, for closed polygons) in which each
angle measure is a rational multiple of =.

6. Forming convex polygons

A set of points in the plane is in general position if no three of them are collinear. A much
stronger requirement is that the points are the vertices of a convex polygon. For example, the set
of 10 points in FIGURE 7 is in general position, but it does not contain the vertex-set of any
convex k-gon for k > 6.

(G) For n> 3, what is the smallest number f(n) such that whenever S is a set of
more than f(n) points in general position in the plane, S contains the
vertex-set of a convex n-gon?

It is known that f(3) =2, f(4)=4 and f(5)=38. For larger n, it is not intuitively obvious that any
size of § is sufficient to guarantee that S contains the vertex-set of a convex n-gon. However, it
has been proved that

2"-2< f(n) < (2::3) (6.1)
and conjectured that f(n)=2""2,
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7. Pushing disks around

The next problem deals with congruent circular disks in the plane and with the area that they
cover. When two disks are far apart, the area of their union is simply the sum of the individual
areas, but as they are pushed closer together, some overlapping occurs and the area of the union
decreases. For two disks, the area of the union certainly cannot be increased by pushing the
disks closer together. But what happens with three or more disks? Suppose their centers are
tautly connected by inelastic string, as shown in FIGURE 8, and we are permitted to move the
disks but not to break the string. Thus, we can decrease the distances between the centers but
not increase them. Is it possible to increase the total area covered? A negative answer is expected
and this is known for three disks. However, the problem is unsettled for any larger number of
disks. Here is a formal statement:

H) If Cy,...,C, and D,,...,D, are congruent circular disks in the plane, centered
at points py,...,p, and q;...,q, respectively, and if 8(q;,q;) <8(p;p;) for all i
and j, does it follow that

area of UD; < area of UC;? (7.1

It has been proved that the area covered by the D,’s is no more than 9 times the area covered
by the C’s, but that’s far from solving the problem. To understand the difficulty, note that if «
denotes area then »

a(CLUGU ++UGC)=A,— A+ 43—+ +(=1)""'4,,
where A4, is the sum of the individual areas and A4, is the sum of the areas of the k-at-a-time
intersections. That is,
Ak=21<jl<,-2<...<,k<,,a(/1jlﬂAjzﬂ ctt ﬂAjk).

In particular, 4, is the area common to all n disks. As the disks are pushed closer together, 4, is
unchanged and A4, does not decrease, so the two-term approximation A4, — A4, of
a(CyU *++ UC,) does not increase. However, the problem is complicated by the presence of
Asy... A,

8. Pushing points around

There are many appealing problems that involve a mixture of plane geometry and number
theory. My favorite is presented here.

Let us say that a set is rational (resp. integral) if only rational numbers {resp. integers) are
realized as distances between points of the set. Each line in Euclidean d-space E¢ contains a
dense rational set, and it is known that each infinite integral set in E is actually contained in a
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line. But what can be said about rational sets in the plane? In particular:

(1) Can every finite subset X={x,,...,x,} of the plane be closely approximated
by a rational set? If so, does the plane actually contain a dense rational set?

By closely approximated, we mean that for each e >0 there exist points y,...,y, such that the
set Y={yy,...,y,} is rational and &(x;,y;) <e for all i. In other words, we would like to push the
points x; to nearby positions y; in order to obtain a rational set.

To gain some insight into the problem, consider the case of three noncollinear points x,;, x,
and x;. Of course,

8(xx1) <8(%,37) + 8(2, %) @.1)

for each permutation (i,j,k) of (1,2,3). Taking y, = x,, we may move x, to a nearby position y,
so as to preserve the inequalities (8.1) and make 8(y,,y,) rational. Then if p, and p, are rational
numbers sufficiently close to 8(y;,x3) and 8(y,, x;) respectively, and if C; is the circle centered at
»; with radius p;, the intersection C,; N C, will consist of two points, one of which is very close to
x;. (See FIGURE 9.) If x; is replaced by this nearby point y;, a close rational approximation
{»1,y2y3} of the set {x,x,,x;} is obtained. Thus for n=3 the desired rational approximation
can be obtained by simply moving the points one at a time. However, this simple approach
doesn’t work when # > 4 for there are ( ;) point-pairs whose distances must be controlled.

9. Inscribed squares

The next unsolved problem is my favorite among those that involve a mixture of plane
geometry and topology.

We say that a square S is inscribed in a set X if X contains all four vertices of S. It doesn’t
matter how the edges of S are related to X. For example, the square indicated in FIGURE 10 is
inscribed in the set C shown there. When can a plane set be expected to admit an inscribed
square? Since any set with an interior point admits many such squares, we’re really interested
only in sets that are “thin” in some sense. The best that can be expected is an affirmative answer
to the following question:

() Does every plane simple closed curve C admit an inscribed square?

Recall that a simple closed curve is a set that is topologically the same as a circle. It need not
be very “simple” at all from the viewpoint of Euclidean geometry. For example, the set C of
FiGURE 10 is a simple closed curve. One naturally tries certain continuity arguments in
attempting to answer (J) affirmatively, and they are easily made rigorous when C is the
boundary of a convex region. Several authors have claimed incorrectly to extend them to an
arbitrary simple closed curve C, but the extension has been made correctly only when C is
sufficiently smooth.

V3 5] (7{}@ s
DIl () b
P ] <:9 D
() g
Y2 Q >
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FIGURE 9. F1GUre 10.
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Additional Background

1. A colorful problem

For each positive integer d, let Ay(d) denote the smallest ¢ such that all of Euclidean d-space
E“ can be painted with ¢ colors so that no two points at unit distance receive the same color. It
follows from an observation of de Bruijn and Erdds [DE] that c is unchanged if “all” is replaced
by “every finite subset.” A short proof can be based on Tychonov’s theorem asserting that the
product of compact topological spaces is compact. For let P denote the set of all functions on
E?to {l,...,c}, topologized as the compact product X, z«Q, where each factor Q, is equal to
{1,...,c}. For each finite S C E¢, let Pg denote the closed subset of P consisting of all f € P such
that f(a)#=f(b) whenever a and b are points of S at unit distance. If every finite subset of E4 can
be colored in ¢ colors so that no two points at unit distance receive the same color, the family of
closed sets {Pg: finite S C E4} has the finite intersection property and hence by compactness
has nonempty intersection. Each point f of the intersection yields a painting of all of E? in ¢
colors so that no two points at unit distance receive the same color.

The emphasis on unit distance has been mainly for conciseness. Note that Ay(d) is the
smallest ¢ such that whenever E? is covered by fewer than c sets, then for each § >0, at least
one of the sets includes two points at distance 8. A related number is By(d), the smallest ¢ such
that whenever E is covered by fewer than c sets, at least one of them is a A-set, meaning that it
realizes all positive numbers as distances between its point-pairs. The numbers A4,(d) and B,(d)
are similarly defined, except that for i =1 they refer to coverings by mutually congruent sets, for
i=2 by closed sets, and for i=3 by sets that are both closed and congruent. Plainly By(d) <

Ao(d),

Ay(d) By(d)
Ay(d) < Ay(d) <Ai(d), and By(d) < By(d)
Problem (A), which was first discussed by Gardner [Ga] in 1960 and Hadwiger [Ha7] in 1961,
asks for the determination of A4¢(2). It is not hard to see that 4,(1) and B,(1) are equal to 2 for
i=0,1 and to 3 for i=2,3. The construction based on the hexagonal tessellation of the plane
shows that 43(2) <7, for it provides a covering of the plane by 7 mutually congruent closed sets
such that the entire interval ]4/5,2V7/5[ is omitted from the distances determined by the
point-pairs of any of the sets. In [Hal, Ha2], Hadwiger showed for all d that B,(d) >d+2 and
By(d) > 4d-2, and Raiskii [Ra] and Woodall [Wo] improved the first result to By(d)>d+2. For
alld > 5, a deep study of “configurations” by Larman and Rogers [LR] and Larman [La’] led to
further improvements. In particular, [LR] proved that By(d) > d(d—1)/6 and [La’] that By(d) >
(n—2)(n—3)(n—4)/178200. Both of these papers contain additional results and conjectures of
great interest. In particular, [La’] conjectures By(d) > 3(3)**/*. In a recent letter, Paul Erdds
conjectures the existence of § >0 such that Ay(d)>(1+8)? for all d, and he reports Peter
Frankl’s theorem that for some k > 1, 4o(d) >d* for all sufficiently large d.

< By(d).

2. A modern way of squaring the circle?

Problem (B), posed by Tarski [Ta"2] in 1925, was motivated by the theorem [Ta’l] that two
polygonal plane regions are equivalent by finite decomposition if and only if they are equal in
area. In this notion of equivalence, the pieces into which a set is decomposed are individually
unrestricted, but they must be pairwise disjoint. For equivalence based on decompositions into
polygonal regions that may intersect but not overlap, the theorem is due to J. Bolyai (1802-
1860), a founder of noneuclidean geometry. For Bolyai’s decomposition theory and higher-di-
mensional analogues, see Hadwiger [Ha5], Boltyanskii [Bo’l,2] and Meschkowski [Me’]. See
Dubins, Hirsch and Karush [DHK] and Sallee [Sa’] for results and unsolved problems related to
Tarski’s problem.

When the pieces are unrestricted, it seems conceivable that two plane regions could be
equivalent by finite decomposition even though they are unequal in area. However, this is
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excluded by the result of Banach [Bal] and Morse [Mo’] that the area function of plane
geometry (and even 2-dimensional Lebesgue measure) can be extended to a function g that is:

(2) defined for all bounded subsets of E?;

(b) finitely additive—u(A4 U B)= u(4)+ p(B) whenever 4 and B are disjoint bounded subsets of
E?,

(c) invariant under rigid motions—pu(A4)=u(B) whenever 4 and B are congruent bounded
subsets of E2.

Though the Banach-Tarski paradox seems incredible, one might imagine that the number of
sets in “paradoxical” decompositions is so large that our intuition is unreliable in dealing with
such numbers. However, that is not the correct explanation. Robinson [Ro] showed that if X, Y
and Z are congruent spherical balls in E3, then X can be partitioned into five sets X, ..., X; in
such a way that the pieces X, and X, can be reassembled (moved by suitable rigid motions) to
form Y and the pieces X3, X, and X, one of which consists of a single point, can be reassembled
to form Z. It is hard to think of a more surprising result! The failure of our intuition does not
stem from the number of pieces X;, but from the complicated nature of some of the pieces. In
particular, the volume function of solid geometry cannot be extended to a function y that
satisfies conditions (a), (b) and (c) with E? replaced by E>. If the extension p. is to be defined for
all bounded subsets of E3, finite additivity or invariance under rigid motions must be sacrificed.
On the other hand, finite additivity and invariance under translations can be preserved. The
crux of the matter is the fact that the group of translations in E* (or rigid motions in E?) is
solvable, while the group of rigid motions in E* is not. See Sierpinski [Si], Dekker [De] and
Meschkowski [Me’] for expositions of the Banach-Tarski paradox and related unsolved prob-
lems.

The Banach-Tarski paradox depends heavily on the axiom of choice, but there are other
weird decompositions that are quite elementary and constructive in nature and work even in the
plane. Some are described by Hadwiger, Debunner, and Klee [HDK]. Others can be derived
from Banach’s easily proved theorem [Ba2] that for any two sets X and Y and one-to-one
mappings f: X—Y and g: Y—X there are partitions X=X,U X, and Y=Y,U Y, for which

=Y, and gY¥,=X,. For example, let us say that two subsets U and V of a normed linear
space E are homothetic if each can be obtained from the other by a dilatation—equivalently, if
U=p+\V for some p € E and A >0. An immediate consequence of Banach’s theorem is that if
X and Y are subsets of E that are bounded and have nonempty interior, then there are partitions
X=X,UX, and Y=Y,U Y, such that X; and Y; are homothetic for i=1,2. In view of this fact,
and of Tarski’s result for polygonal regions [Ta’1], it should perhaps not be surprising if there is
“a modern way of squaring the circle.”

3. Equichordal points

The equichordal problem was raised by Fujiwara [Fu] in 1916 and by Blaschke, Rothe and
Weitzenbock [BRW] in 1917. The general strategy of attack on the problem has been to assume
the existence of a plane convex region R with two equichordal points p and g, and then to derive
many necessary properties of R. A sufficiently long list might show how to construct R, or
might include two mutually contradictory properties and hence show R does not exist after all.
For example, Wirsing [Wi] showed that R’s boundary curve C is analytic, while an earlier author
had claimed C could not be six times differentiable. That would have settled the problem but for
errors in the earlier “proof.” Note that if R does exist we could design a drawing instrument with
two arms, pivoting at p and q respectively and hinged together at one end, so that as the hinge
traces R’s boundary, the other ends of both arms do the same. On the basis of experiment, this
seems to be impossible. However, a proof is lacking, and Petty and Crotty [PC] have described
some noneuclidean plane geometries in which a convex body can have two equichordal points.

Let p and g be distinct points of E2 and let L denote the line through p and g. A construction
of Hayashi [ Ha®] and Hallstrom [Ha”] apparently produces a subset R of E? such that LN R is
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a segment and each line through p or g intersects R in a segment of the same length as LN R.
However, it seems the set R so constructed may be neither closed nor open nor convex. The
ends of the mentioned segments (aside from LN R) lie on two curves, but those may oscillate
wildly as they approach the line L. In particular, the boundary of R may fail to be a simple
closed curve and there may be segments in L that are longer than LN R and yet join two
boundary points of R.

The deepest and most important paper on the equichordal problem is that of Wirsing [Wi],
whose results do not depend on convexity; instead, they require only that R’s boundary should
be a simple closed curve. See Hadwiger [Ha3] and Klee [K11] for expositions of the problem and
lists of other references. Some recent inconclusive attacks on the equichordal problem have been
made by Hallstrom [Ha”] (who also considered the equireciprocal problem (D)) and McLachlan
and Owens [MO].

Problem (D) was initially misstated in [K11], then correctly stated by Guy and Klee [GK].

4. A tale of two problems

Some accounts of the four-color conjecture attribute it to cartographers, some to A. F.
Mobius. Neither attribution is supported by the careful historical research of May [Mal].
Apparently the conjecture was first formulated by Francis Guthrie, who studied mathematics at
University College, London. His brother, Frederick, told the conjecture in 1852 to their teacher,
A. DeMorgan, who communicated it to other mathematicians. The first published reference, in
1878, was associated with A. Cayley. The clever but erroneous solutions of Kempe [Ke] and Tait
[Ta] appeared in 1879-80, and Kempe’s solution was accepted until the error was pointed out by
Heawood [He] in 1890. Over the years, several other research mathematicians and scores of
mathematical amateurs produced erroneous “proofs” of the four-color conjecture. Errors were
so common that whenever a new “solution” appeared, mathematicians would automatically
assume there must be a hole in it somewhere. Thus it was especially interesting that the final
solution, by Appel and Haken in 1976, was based on the original idea of Kempe (see [AH]1,2,3],
[AHK], [Ha')).

Among treatments of the four-color problem that appeared before it was solved, the
monographs of Ore [Or] and Heesch [He] and the article of Coxeter [Co3] are worthy of special
mention. A popular account of the solution appears in [AH2], and post-solution monographs
have been written by Saaty and Kainen [SK] and Barnette [Ba'].

The sphere is easily seen to be equivalent to the plane for the purposes of map coloring, and
the problem may be considered on other surfaces as well. The chromatic number of a surface S is
the smallest number ¢ such that any map on S can be colored with ¢ or fewer colors. Let ¢,
denote the chromatic number of the surface obtained by adding p handles to a sphere or,
equivalently, drilling p separate holes through a block of wood. The four-color theorem asserts
co=4. Heawood [He] showed ¢, <H(p) for all p>0, where H(p) is the greatest integer not
exceeding (7+ V' 1+48p )/2. He also showed ¢, = H(l), so that the chromatic number of a torus
is 7. Over the years, other mathematicians established equality for other values of p, and finally
in 1968 Ringel and Youngs [RY1,2] were able to show ¢, = H(p) for all p >0. It is interesting
that this problem, dealing with all cases except p=0, should have been settled before the
four-color problem.

The problem on ordinary lines was posed by Sylvester [Sy] in 1893, rediscovered by Erdés in
1933, and solved by T. Gallai a few days later. The short proof given here is due to L. M. Kelly
(reported by Coxeter [Col, 2]). A similarly short proof was given by Lang [La] for the dual result,
asserting that if a finite family of lines in the plane is such that its members are not all parallel
and do not pass through a common point, then there exists a point that lies on exactly two of the
lines. See Motzkin [Mo] for a fuller discussion of the problem’s history.

The affirmative solution to Sylvester’s question says there is at least one ordinary line for any
finite plane set whose n points are not all collinear. But should there not be many such lines
when 7 is large? Dirac [Di] conjectured there are at least [n/2] ordinary lines, and Kelly and
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Moser [KM] proved there are at least 3n/7. For other results related to Sylvester’s problem and
Dirac’s conjecture, and for additional references, see Crowe and McKee [CM], Chakerian [Ch],
Griinbaum [Gr], Kelly and Rottenberg [KR], Meyer [Me”], and Erdds and Purdy [EP2]. For
higher-dimensional extensions, see Motzkin [Mo], Bonnice and Kelly [BK], Edelstein [Ed] and
Rottenberg [Ro]. This is only a small sample of the many papers that have been inspired by
Sylvester’s problem.

5. Reflections on reflections

Problem (E) was stated by Klee [KI2] but did not originate with him. Perhaps it was first
posed by E. Straus in the early 1950’s. The nonilluminable region related to the ellipse is P.
Ungar’s modification of an idea of Penrose and Penrose [PP]. By extending the idea it is possible
to construct, for each positive integer &, a plane region R, with smooth boundary such that R, is
not illuminable from any set of k points. This was noted in [KH], and Rauch [Ra’] obtained
related results.

Problems (E) and (F) involve the mathematical “light rays™ of geometric optics rather than
the light waves that are closer to physical reality. (See Rauch and Taylor [RT] for behavior of
the latter.) It is assumed that whenever a ray meets an inner point of an edge of the polygonal
boundary, the angle of reflection is equal to the angle of incidence; and when it meets a vertex,
it simply ends (or it may be assumed to return along its former path).

The stated result on rays (or billiard ball paths) in squares is due to Konig and Sziics [KS]
(see also Hardy and Wright [HW]), and was first proved by using a theorem of Kronecker on
simultaneous Diophantine approximation. A more elementary proof was given by Sudan [Su].
The result on the existence of dense light rays was proved in different ways by Zemlyakov and
Katok [ZK] and Boldrighini, Keane and Marchetti [BKM]. For other references, problems and
results on billiard ball problems, see these two papers, Poritsky [Po], Croft and Swinnerton-Dyer
[CS], Schoenberg [Scl,2], Halpern [Ha"’] and Kreinovic [Kr].

6. Forming convex polygons

The conjecture that f(n)=2""2 was made by Erdds and Szekeres [ES1] in 1935. They
established the right side of (6.1) in [ES1], and the left side 25 years later in [ES2]. (See also
Kalbfleisch, Kalbfleisch and Stanton [KKS].) For other problems similar in spirit to (G), see
[ES1], a paper by Erdés and Purdy [EP1], and other papers referred to in these. Recently Erdds
has asked: For n > 3, what is the smallest number g(n) (if it exists) such that whenever S is a set
of more than g(n) points in general position in the plane, S contains the vertex-set of a convex
n-gon that has no points of § in its interior? Plainly g(3)=2 and g(4) =4. The existence of g(5)
was proved independently by A. Ehrenfeucht and by H. Harborth [Ha'2], who showed g(5)=9.
It is unknown whether g(6) < 0.

A tool of [ES1] is the fact that in any permutation of the integers 1,...,n2+1 there is a
monotone subsequence of length n+ 1. A short proof of this was given by Seidenberg [Se]. (See
also Chvatal and Komlds [CV] and Mirsky [Mi’].)

7. Pushing disks around

Problem (H) is due to Thue Poulsen [TP] and Kneser [Kn], and was discussed also by
Hadwiger [Had]. It was Kneser who established the relaxation of (H) which has an additional
factor 9 on the right side, and a factor 3¢ for the analogous problem in E“. Hadwiger noted that
the 1-dimensional analogue of (7.1) (dealing with congruent segments on a line) is valid, and
attributed to Habicht and Kneser the fact that (7.1) holds when the centers p;, can be moved
continuously to the centers g, in such a way that, during the motion, the inter-center distances
never increase. A proof of the latter result was published by Bollobas [Bo]. To understand the
hypothesis of the Habicht-Kneser-Bollobas theorem, imagine that the p’s are connected by
elastic bands; then the assumption is that the p,’s can be moved to the positions g; in such a way
that no band stretches at any time.
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Under the hypotheses of (H), does it follow that
area of N1D, > area of N{C;?

This problem also appears to be open, though it is known at least that if the intersection of the
C’s is nonempty, then so is the intersection of the D;’s. The analogous result in E¢ was
established by Kirszbraun [Ki], and in recent years it has been extended and applied in
remarkable ways. See Danzer, Griibaum, and Klee [DGK] for the history up to 1963, and see
Minty [Mil, 2] for more recent developments.

8. Pushing points around

Anning and Erdds [AE] proved (i) every infinite integral set in E? is collinear, and (ii) E?
contains a noncollinear integral set of n points for each n > 3. Erd6s [Er] gave a simple proof of
(i) for E¢, and Steiger [St] extended (ii) to E¥ by replacing 3 with d+ 1 and “noncollinear” with
“not contained in any hyperplane.”

Using an idea of Miiller [Mii], Hadwiger and Debrunner constructed a dense rational set in
the unit circle of E? (see [HDK]). This implies (ii) and raises the question of which plane sets
can be closely approximated by rational sets. Perhaps

(a) there is a rational set that is dense in the plane,

a possibility mentioned by Hadwiger [Ha6] in attributing the problem to Erddés (who writes that
he first heard it from Ulam in 1945 or 1946 (see [U1])). Perhaps (a) fails but

(b) every finite plane set can be closely approximated by a rational set,

which would settle a question attributed by Mordell [Mo] to I. J. Schoenberg. Or perhaps, as
suggested by J. R. Isbell in [HDK], there is an integer n > 5 such that

(c) in any rational plane set of at least n points, some three points are collinear or some four
are concyclic.

That would strongly negate (b) and hence (a). An example of Harborth [Ha™1] shows that (c)
fails when n=5, but the case of n=6 appears to be unsettled. Problems analogous to those
posed by (a)—(c) are open in E¢ for all 4 >2, and there are no obvious relationships among the
problems in different dimensions.

As was remarked by Mordell, the problem of finding all rational sets of 4 points in the plane
goes back to Brahmegupta, who was born in 598 A.D. The problem was in a sense solved by E.
E. Kummer in 1848, though it is not obvious from his parametrization that every set of 4 points
in E? is closely approximated by a rational set. The latter result was proved by Mordell [Mo] in
1959 and sharpened by Almering [Al] in 1963. Since then, several other results on rational sets
have been discovered; most of them can be found through a paper by Ang, Daykin and Sheng
[ADS] and its references. The difficulty of problem (I), and the fact that little progress has been
made on it, is dramatically illustrated by the fact that known results provide no basis for
choosing between the truth of (a) on the one hand and, on the other hand, the truth of (c) for
n=6.

9. Inscribed squares

For all sufficiently smooth simple closed curves in the plane, the existence of an inscribed
square was proved by S’nirelman [Sn] and Jerrard [Je]. For the case in which the curve is the
boundary of a convex region, elementary proofs were given by Emch [Em1, 2], Zindler [Zi] and
Christensen [Ch’]. This case had been settled earlier by O. Toeplitz, but apparently his proof was
never published (see Griinbaum [Gr]). Perhaps the general case of (J) could be settled by the
methods of nonstandard analysis, in the spirit of Narens’s proof [Na] of the Jordan curve
theorem.

It is natural to wonder about higher-dimensional analogues of (J). One aspect was settled by
Bielecki [Bi], who described a 3-dimensional convex body in which no rectangular parallelepiped
can be inscribed. On the other hand, Pucci [Pu] showed that every 3-dimensional convex body
admits an inscribed regular octahedron. The theorems of S’nirelman and Pucci were extended to
E¢ by Guggenheimer [Gu].
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