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Nim
Forms of Nim have been played since antiquity and a complete theory was published
as early as 1902 (see [3]). Martin Gardner described the game in one of his earliest
columns [7] and returned to it many times over the years ([8–16]).

Central to the analysis of Nim is Nim-addition. The Nim-sum is calculated by writ-
ing the terms in base 2 and adding the columns mod 2, with no carries. A Nim position
is a winning position if and only if the Nim-sum of the sizes of the heaps is zero [2], [7].

Is there is a generalization of Nim in which the analysis uses the base-b representa-
tions of the sizes of the heaps, for b > 2, in which a position is a win if and only if the
mod-b sums of the columns is identically zero? One such game, Rimb (an abbreviation
of Restricted-Nim) exists, although it is complicated and not well known. It was intro-
duced in an unpublished paper [6] in 1980 and is hinted at in [5]. Despite his interest
in Nim, Martin Gardner never mentions Rimb, nor does it appear in Winning Ways [2],
which extensively analyzes Nim variants.

In the present paper we focus on b = 10, and consider, not Rim10 itself, but the
arithmetic that arises if calculations, addition and multiplication, are performed mod
10, with no carries. Along the way we encounter several new and interesting number
sequences, which would have appealed to Martin Gardner, always a fan of integer
sequences.
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The Carryless Islands
The fabled, carefree residents of the Carryless Islands in the remote South Pacific have
very few possessions, which is just as well, since their arithmetic is ill-suited to ac-
curate bookkeeping. When they add or multiply numbers, they follow rules similar to
ours, except that there are no carries into other digit positions. Sociologists explain
this by noting that the Carryless Islands were originally penal colonies, and, as penal
institutions are generally known to have excellent dental care, the islanders were, hap-
pily, generally free of carries. We will use + and × for their operations,1 and + and
× for the standard operations used by the rest of the world. Addition and multiplica-
tion of single-digit numbers are performed by “reduction mod 10.” Carry digits are
simply ignored, so 9+ 4 = 3, 5+ 5 = 0, 9× 4 = 6, 5× 4 = 0, and so on. Adding
or multiplying larger numbers also follows the familiar procedures, but again with the
proviso that there are no carries. For example, adding 785 and 376 produces 51, and
the product of 643 and 59 is 417 (see Figure 1).

(a) 7 8 5
+ 3 7 6

0 5 1

(b) 6 4 3
× 5 9

4 6 7
0 0 5

0 4 1 7

Figure 1. (a) Carryless addition. (b) Carryless multiplication.

What does elementary number theory look like on these islands? Let’s start with
the carryless squares n × n. For n = 0, 1, 2, 3 we get 0, 1, 4, 9, Then for n > 3 we
have 4× 4 = 6, 5× 5 = 5, 6× 6 = 6, 7× 7 = 9, 8× 8 = 4, 9× 9 = 1, 10× 10 =
100, . . . , giving the sequence

0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 100, 121, 144, 169, 186, 105, 126, 149, 164, . . . .

It turns out that this is entry A059729 in the OEIS [17], contributed by Henry Bot-
tomley on February 20, 2001, although without any reference to earlier work on these
numbers. Bottomley also contributed sequence A059692, giving the carryless multi-
plication table, and several other sequences related to carryless products. Likewise the
sequence of values of n + n,

0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 20, 22, 24, 26, 28, 40, 42, . . . ,

is entry A004520, submitted to the OEIS by one of the present authors around 1996,
again without references. (If these numbers are sorted and duplicates removed, we
get the carryless “evenish” numbers, that is, numbers all of whose digits are even,
A014263.) Carryless arithmetic must surely have been studied before now, but the
absence of references in [17] suggests that it is not mentioned in any of the standard
texts on number theory.

1We prefer not to use outlandish symbols such as♣ and♠, since+ and× are perfectly reasonable operations,
although to our eyes they have rather strange properties. As Marcia Ascher remarks, writing about mathematics
in indigenous cultures, “in many cases these cultures and their ideas were unknown beyond their own boundaries,
or misunderstood when first encountered by outsiders” [1].
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The fabled residents of the Carryless Islands
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—Emily Flake, The New Yorker, August 29, 2011.

The carryless primes
If we require that a prime π is a number whose only factorization is 1 times itself,
we are out of luck, since every carryless number is divisible by 9, and there would
be no primes at all. (For 9× 1 = 9, 9× 2 = 8, 9× 3 = 7, . . . , 9× 9 = 1. So if we
construct a number ρ by replacing all the 1’s in π by 9’s, all the 2’s by 8’s, . . . then
π = 9× ρ, and π would not be a prime.)

There are primes, when defined in the right way. Since 1× 1 = 1, 3× 7 = 1 and
9× 9 = 1, all of 1, 3, 7 and 9 divide 1 and so divide any number. We call 1, 3, 7 and 9
units, the usual name for integers that divide 1. Units should not be counted as factors
when considering if a number is prime (just as factors of −1 are ignored in ordinary
arithmetic: 7 = (−1)× (−7) doesn’t count as a factorization when considering if 7 is
a prime).

So we define a carryless prime to be a non-unit π whose only factorizations are of
the form π = u× ρ where u is a unit. Computer experiments suggest that the first few
primes are

21, 23, 25, 27, 29, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, . . . , (1)

but there are surprising omissions in this list, resulting from some strange factoriza-
tions: 2 = 2× 51, 10 = 56× 65, 11 = 51× 61. It is hard to be sure at this stage
that the above list is correct, since there exist factorizations where one of the numbers
is much larger than the number being factored, such as 2 = 4× 5005505553. One
property that makes carryless arithmetic interesting is the presence of zero-divisors:
the product of two numbers can be zero without either of them being zero: 2× 5 = 0,
628× 55 = 0. Perhaps 21 is the product of two really huge numbers? Nonetheless,
the list is correct, as we will see (it is now sequence A169887 in [17]).
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Algebra to the rescue
The secret to understanding carryless arithmetic is to introduce a little algebra. Let R10

denote the ring of integers mod 10, and R10[X ] the ring of polynomials in X with co-
efficients in R10. Then we can represent carryless numbers by elements of R10[X ]: 21
corresponds to 2X + 1, 109 to X 2

+ 9, and so on. Carryless addition and multiplication
are simply addition and multiplication in R10[X ]: our first example,

785+ 376 = 51

corresponds to

(7X 2
+ 8X + 5)+ (3X 2

+ 7X + 6) = 5X + 1,

where the polynomials are added or multiplied in the usual way, and the coefficients
then reduced mod 10. Conversely, any element of R10[X ] represents a unique carryless
number (just set X = 10 in the polynomial). In fact arithmetic in R10[X ] is clearly ex-
actly the same as the arithmetic of carryless numbers. This could be used as a formal
definition of carryless arithmetic mod 10. It also shows that this arithmetic is commu-
tative, associative and distributive.

Since R10[X ] is a ring, we can not only add and multiply, we can also subtract,
something the Carryless Islanders never considered. The negatives of the elements of
R10 are −1 = 9, −2 = 8, . . . , −9 = 1, and similarly for the elements of R10[X ]. So
the negative of a carryless number is its “10’s complement,” obtained by replacing
each nonzero digit d by 10− d , for example −702 = 308. To subtract A from B, we
add −A to B: 650− 702 = 650+ 308 = 958. This is equivalent to doing elementary
school subtraction where we can “borrow” but don’t have to pay back!

The units in R10[X ], that is, the elements that divide 1, are the constants 1, 3, 7, 9,
and the carryless primes that we defined are the irreducible elements in R10[X ], that
is, non-units f10(X) ∈ R10[X ] whose only factorizations are of the form f10(X) =
ug10(X), where u is a unit and g10(X) ∈ R10[X ]. The units can also be written as
1,−1, 3 and −3, which more closely relates them to the units 1 and −1 in ordinary
arithmetic (3 and −3 act in some ways like the imaginary units i and −i , squaring to
−1, for example).

The key to further progress is to notice that R10 is the direct sum of the ring R2 of
integers mod 2 and the ring R5 of integers mod 5. Given r10 ∈ R10, we read it mod 2 and
mod 5 to obtain a pair [r2, r5] with r2 ∈ R2, r5 ∈ R5. The elements 0, 1, . . . , 9 ∈ R10

(or equivalently the carryless digits 0, 1, . . . , 9) and their corresponding pairs [r2, r5]

are given by the following table. The Chinese Remainder Theorem guarantees that this
is a one-to-one correspondence.

0 1 2 3 4 5 6 7 8 9
[0,0] [1,1] [0,2] [1,3] [0,4] [1,0] [0,1] [1,2] [0,3] [1,4] (2)

As a check, we note that {1} is the (singleton) set of units in R2, while {1, 2, 3, 4} is the
set of units in R5, so the pairs [1, 1], [1, 2], [1, 3] and [1, 4] correspondingly produce
the units 1, 7, 3 and 9 of R10.

Similarly, polynomials f10(X) ∈ R10[X ] correspond to pairs of polynomials [ f2(X),
f5(X)], obtained by reading f10(X) respectively mod 2 and mod 5. Conversely, given
any such pair of polynomials [ f2(X), f5(X)], there is a unique f10(X) ∈ R10[X ]
that corresponds to them, which can be found using (2). We indicate this by writ-
ing f10(X) ↔ [ f2(X), f5(X)]. If also g10(X) ↔ [g2(X), g5(X)], then f10(X) +
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g10(X) ↔ [ f2(X) + g2(X), f5(X) + g5(X)] and f10(X)g10(X) ↔ [ f2(X)g2(X),
f5(X)g5(X)].

We are now in a position to answer many questions about carryless arithmetic.

The carryless primes, again
What are the irreducible elements f10(X) ∈ R10[X ]? If f10(X)↔ [ f2(X), f5(X)] is ir-
reducible then certainly f2 and f5 must be either units or irreducible, for if f2 = g2h2

then we have the factorization [ f2, f5] = [g2, f5][h2, 1]. Also [ f2, f5] = [ f2, 1][1, f5],
so one of f2, f5 must be irreducible and the other must be a unit. So the irreducible
elements in R10[X ] are of the form [ f2(X), u], where f2(X) is an irreducible poly-
nomial mod 2 of degree ≥ 1 and u ∈ {1, 2, 3, 4}, together with elements of the form
[1, f5(X)], where f5(X) is an irreducible polynomial mod 5 of degree ≥ 1.

The irreducible polynomials mod 2 are X , X + 1, X 2
+ X + 1, . . . , and the irre-

ducible polynomials mod 5 are u X , u X + v, . . . , where u, v ∈ {1, 2, 3, 4} (see entries
A058943, A058945 in [17]). The first few irreducible elements in R10[X ] are therefore
[X, 1], [X, 2], [X, 3], [X, 4], [X + 1, 1], [X + 1, 2], . . . , and [1, X ], [1, 2X ], [1, 3X ],
[1, 4X ], [1, X + 1], [1, 2X + 1], . . . . The corresponding carryless primes, according
to (2), are 56, 52, 58, 54, 51, 57, . . . , and 65, 25, 85, 45, 61, 21, . . . . And so we can
verify that the list in (1) is correct.

We will call a number with at least two digits in which all digits except the rightmost
are even but the rightmost is odd an e-type number (A143712), and a number with at
least two digits in which all digits except the rightmost are 0 or 5 and the rightmost is
neither 0 nor 5 an f-type number (A144162). Similarly, we call the primes correspond-
ing to the irreducible elements [1, f5(X)] e-type primes, and the primes corresponding
to the irreducible elements [ f2(X), u] f-type primes.

We also see that our earlier concern about the primality of 21 was groundless. It
is impossible for the length (in decimal digits) of a nonzero carryless product to be
less than the length of both of the factors. This follows from the fact that if `(n) is the
number of decimal digits in the number n > 0 corresponding to a pair [ f2(X), f5(X)],
then `(n) = 1+max{deg f2, deg f5}. So if mn > 0, `(mn) ≥ min{`(m), `(n)}.

Also, since we know how many irreducible polynomials mod 2 and mod 5 there are
of given degree (see A001037, A001692 in [17]), we can write down a formula for the
number of k-digit carryless primes, something that we cannot do for ordinary primes,
namely

4

k − 1

∑
d divides k−1

µ

(
k − 1

d

)
(2d
+ 5d),

for k ≥ 2, where µ is the Möbius function (A008683). There are 28 primes with
two digits (the twenty listed in (1), together with 65, 67, 69, 81, 83, 85, 87, 89), 44
with three digits, . . . (A169962). For large k the number is about 4 · 5k−1/(k − 1),
whereas the number of ordinary primes with exactly k digits is much larger, about
9 · 10k−1/(k log 10), so carryless primes are much rarer than ordinary primes.

Incidentally, the prime ideals in R10[X ], as distinct from the irreducible elements,
all have a single generator, which is one of [0, 1], [1, 0], [1, 1], [ f2(X), 1], [1, f5(X)],
where f2(X), f5(X) are irreducible (cf. [18, Chap. III, Thm. 30]).
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The carryless squares, again
Squaring a mod 2 polynomial is easy: f2(X)2 = f2(X 2). So if n corresponds to the
pair [ f2(X), f5(X)], n2 corresponds to [ f2(X 2), f5(X)2] = [ f2(X 2), 0] + [0, f5(X)2].
This gives a two-step recipe for producing all carryless squares. First find (using (2))
the carryless number m corresponding to [0, f5(X)2], where f5(X) is any polynomial
mod 5. The effect of adding a nonzero [ f2(X 2), 0] changes some subset of the digits
in positions 0, 2, 4, . . . of m by the addition of 5 mod 10.

For example, if f5(X) = X + 2, f5(X)2 = X 2
+ 4X + 4, and by (2) [0, f5(X)2]

corresponds to the carryless square m = 644. We now add 5 mod 10 to any sub-
set of the digits in positions 0, 2, 4, 6, . . . of m (considering m extended by prefix-
ing it with any number of zeros), obtaining infinitely many squares 644, 649, 144,
149, . . . , 50644, 5050649, . . ..

This also leads to a formula for the number of k-digit carryless squares. For even k
the number is 0, and for odd k it is

1

2
9 · 10(k−1)/2

+ 2(k−3)/2

(zero is excluded from the count). There are five squares of length 1 (namely 1, 4, 5, 6
and 9), 46 of length 3, . . . (see A059729, A169889, A169963). For large odd k there
are about twice as many k-digit carryless squares as ordinary squares.

Divisors and factorizations
What about the factorization of numbers into the product of carryless primes? Unfortu-
nately, the existence of zero-divisors complicates matters, and it turns out that there is
no natural way to define, for example, an analog of the usual sum-of-divisors function
σ(n). In our analysis we define several classes of carryless numbers:

U := {1, 3, 7, 9}, the units,
E := {0, 2, 4, 6, 8, 20, 22, . . .}, the “evenish” numbers, in which all digits are even
(A014263),
F := {0, 5, 50, 55, . . .}, the “fiveish” numbers, in which all digits are 0 or 5
(A169964),
Z := E ∪F = {0, 2, 4, 5, 6, 8, 20, 22, . . .}, the zero-divisors (A169884),
N := {1, 3, 7, 9, 10, 11, 12, 13, . . .}, the positive numbers not in Z (A169968).

Suppose d is a carryless divisor of n, that is, there is a number q such that d × q =
n. What can be said about the possible choices for q? One can show—we omit the
straightforward proofs—that

• if d ∈ N then there is a unique q ,
• if d ∈ E then d × q ′ = n if and only if q ′ = q + v for some v ∈ F ,
• if d ∈ F then d × q ′ = n if and only if q ′ = q + e for some e ∈ E .

The same distinctions are needed to describe factorizations into primes.

• If n ∈ N then n has a unique factorization as a carryless product of primes, up to
multiplication by units. For example, we already saw 10 = 56× 65. But we also
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have 10 = (3× 56)× (7× 65) = 58× 25 = (9× 56)× (9× 65) = 54× 45 =
9× 52× 25, etc., illustrating the nonuniqueness. Also 11 = 51× 61; 101 = 21×
29× 51, 1234 = 23× 23× 23× 51× 51× 52. It follows that any non-unit in N
can be written both as e× f and e′ + f ′, where e and e′ are e-type numbers and f
and f ′ are f-type numbers. For example, 12 = 81× 52 = 61+ 51.

• If n ∈ E then n has a unique factorization as 2 times a product of e-type primes, up
to multiplication by units (in this case, every f-type prime divides n). For example,
20 = 2× 65, 22 = 2× 61, 2468 = 2× 69× 69× 69.

• If n ∈ F then n has a unique factorization as 5 times a product of f-type primes, up
to multiplication by units (in this case, every e-type prime divides n). For example,
50 = 5× 52, 505 = 5× 51× 51.

Here are the analogous statements about divisors:

• if n ∈ N , n has only finitely many divisors. If d divides n and u ∈ U , then d × u
divides n. The divisors may be grouped into equivalence classes d × U . Since the
sum of the elements of U is zero, so is the sum of the divisors of n.

• if n ∈ E , d divides n, u ∈ U and v ∈ F , then d × u + v divides n. So n has
infinitely many divisors, belonging to equivalence classes d × U + F .

• if n ∈ F , d divides n, u ∈ U and e ∈ E , then d× u + e divides n. So n has infinitely
many divisors, belonging to equivalence classes d × U + E .

Any attempt to define a sum-of-divisors function must specify how to choose rep-
resentatives from the equivalence classes. There seems to be no natural way to do this.
One possibility would be to choose the smallest decimal number in each class, but this
seems unsatisfactory (since it depends on the ordering of decimal numbers, another
concept the islanders seem not to be familiar with).

Further number theory
In summary, we can help the Carryless Islanders by defining subtraction, prime num-
bers, and factorization into primes. But further concepts such as the number of divisors,
the sum of divisors and perfect numbers seem to lie beyond these Islands.

However, many other carryless analogs are well-defined, including including trian-
gular numbers (A169890), cubes (A169885), partitions (A169973), greatest common
divisors and least common multiples, and so on. Some seem exotic, while other fa-
miliar sequences simply become periodic. For example, the analog of the Fibonacci
numbers coincides with the sequence of Fibonacci numbers read mod 10, A003893,
which becomes periodic with period 60 (the periodicity of the Fibonacci numbers to
any modulus being a well-studied subject, see sequence A001175). Similarly, the ana-
logue of the powers of 2 (A000689) becomes periodic with period 4. We might also
generalize beyond simple squares, cubes, etc. and investigate the properties of polyno-
mials or power series based on carryless operations—How do these factor? What are
their fixed points?—and so on.

Taking a different tack, carryless mod 10 partitions are enumerated in A169973,
which may be derived as the coefficients of zn in the formal expansion of the analog of
the classic partition generating function

∏
∞

k=1(1+ zk), wherein powers of z are multi-
plied together by combining their exponents with carryless mod 10 addition instead of
the ordinary sum.
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Afterword
There’s a great deal yet to be explored in these Carryless Islands! Watch for our next
paper on another carryless arithmetic, in which operations on single digits are defined
by a ⊕ b = max{a, b}, a ⊗ b = min{a, b}. We call this “dismal arithmetic.”

When the Handbook of Integer Sequences was published 39 years ago, Martin Gard-
ner was kind enough to write in his Mathematical Games column of July 1974 that
“every recreational mathematician should buy a copy forthwith.” That book contained
2372 sequences: today its successor, the On-Line Encyclopedia of Integer Sequences
(or OEIS) [17], contains nearly 200,000 sequences. We were about to write to Martin
about carryless arithmetic when we heard the sad news of his death. This article, the
first of a series on various kinds of carryless arithmetic, is offered in his honor.

Summary. What might arithmetic look like on an island that eschews carry digits? How would
primes, squares and other number theoretical concepts play out on such an island?

References

1. Marcia Ascher, Mathematics Elsewhere: An Exploration of Ideas Across Cultures, Princeton University
Press, Princeton, NJ, 2002.

2. E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, A K Peters,
Wellesley MA, 2nd ed., 4 vols, 2004.

3. C. L. Bouton, Nim, a game with a complete mathematical theory, Ann. Math. 3 (1902) 35–39; available at
http://dx.doi.org/10.2307/1967631

4. J. H. Conway, On Numbers and Games, Academic Press, NY, 1976.
5. T. S. Ferguson, Some chip transfer games, Theoret. Comput. Sci. 191 (1998) 157–171; available at http:

//dx.doi.org/10.1016/S0304-3975(97)00135-7

6. J. A. Flanigan, NIM, TRIM and RIM, unpublished document, Mathematics Department, University of Cali-
fornia at Los Angeles, 1980; available at http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.
1.1.74.955.

7. Martin Gardner, Nim and Tac Tix, The Scientific American Book of Mathematical Puzzles and Diversions,
Simon & Schuster NY, 1959.

8. , Jam, Hot and Other Games, Mathematical Carnival, Vintage Books NY, 1977.
9. , Nim and Hackenbush, Wheels, Life and Other Mathematical Amusements, W. H. Freeman NY,

1983.
10. , Sim, Chomp and Race Track, Knotted Doughnuts and Other Mathematical Entertainments, W. H.

Freeman NY, 1986.
11. , Dodgem and Other Simple Games, Time Travel and Other Mathematical Bewilderments, W. H.

Freeman NY, 1988.
12. , Wythoff’s Nim, Penrose Tiles to Trapdoor Ciphers . . . and the Return of Dr. Matrix, W. H. Freeman

NY, 1989.
13. , Matches, Mathematical Circus, Mathematical Association of America, Washington DC, revised ed.,

1992.
14. , The Rotating Table and Other Problems, Fractal Music, Hypercards and More . . . , W. H. Freeman

NY, 1992.
15. , Lavinia Seeks a Rule and Other Problems, The Last Recreations: Hydras, Eggs and Other Mathe-

matical Mystifications, Springer NY, 1997.
16. , Surreal Numbers, The Colossal Book of Mathematics, W. W. Norton NY, 2001.
17. The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences (2011); available at http://

oeis.org.
18. O. Zariski and P. Samuel, Commutative Algebra, Van Nostrand NY, vol. I, 1958.

50 „ THE MATHEMATICAL ASSOCIATION OF AMERICA

http://dx.doi.org/10.2307/1967631
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10

