
A1. Find all ordered pairs (a, b) of positive integers for which

1

a
+

1

b
=

3

2018
.

Answer. The six ordered pairs are (1009, 2018), (2018, 1009), (1009 · 337, 674) =
(350143, 674), (1009 · 1346, 673) = (1358114, 673), (674, 1009 · 337) = (674, 350143),
and (673, 1009 · 1346) = (673, 1358114).

Solution. First rewrite the equation as 2 · 1009(a + b) = 3ab, and note that 1009
is prime, so at least one of a and b must be divisible by 1009. If both a and b are
divisible by 1009, say with a = 1009q, b = 1009r, then we have 2(q + r) = 3qr. But
qr ≥ q + r for integers q, r ≥ 2, so at least one of q, r is 1. This leads to the solutions
q = 1, r = 2 and r = 1, q = 2, corresponding to the ordered pairs (a, b) = (1009, 2018)
and (a, b) = (2018, 1009).

In the remaining case, just one of a and b is divisible by 1009, say a = 1009q. This
yields 2 · 1009(1009q + b) = 3 · 1009qb, which can be rewritten as
2 · 1009q = (3q− 2)b. Because the prime 1009 does not divide b, it must divide 3q− 2;
say 3q − 2 = 1009k. Then 1009k + 2 = 3 · 336k + k + 2 is divisible by 3, so
k ≡ 1 (mod 3). For k = 1, we get q = 337, a = 1009 · 337, b = 2q = 674. For k = 4,
we get q = 1346, a = 1009 · 1346, b = q/2 = 673. We now show there is no solution
with k > 4. Assuming there is one, the corresponding value of q is greater than 1346,
and so the corresponding

b =
2q

3q − 2
· 1009

is less than 673. Because b is an integer, it follows that b ≤ 672, which implies

1

b
≥ 1

672
>

3

2018
, contradicting

1

a
+

1

b
=

3

2018
.

Finally, along with the two ordered pairs (a, b) for which a is divisible by 1009 and b
is not, we get two more ordered pairs by interchanging a and b.

A2. Let S1, S2, . . . , S2n−1 be the nonempty subsets of {1, 2, . . . , n} in some order, and let
M be the (2n − 1)× (2n − 1) matrix whose (i, j) entry is

mij =

{
0 if Si ∩ Sj = ∅;
1 otherwise.

Calculate the determinant of M .

Answer. The determinant is 1 if n = 1 and −1 if n > 1.

Solution. Note that if we take the nonempty subsets of {1, 2, . . . , n} in a different
order, this will replace the matrix M by PMP−1 for some permutation matrix P ,
and the determinant will stay unchanged. Denote the matrix M by Mn to indicate
its dependence on n. Then we will show that det(Mn+1) = −(det(Mn))2, from which
the given answer follows by induction on n because M1 has the single entry 1.

Using the order S1, S2, . . . , S2n−1 for the nonempty subsets of {1, 2, . . . , n}, we
arrange the nonempty subsets of {1, 2, . . . , n+ 1} in the order

S1, S2, . . . , S2n−1, {n+ 1}, S1 ∪ {n+ 1}, S2 ∪ {n+ 1}, . . . , S2n−1 ∪ {n+ 1}.
Then any of the first 2n − 1 subsets has empty intersection with {n+ 1}, any two of
the last 2n subsets have nonempty intersection because they both contain n+ 1, and
for any other choice of two nonempty subsets of {1, 2, . . . , n+ 1}, whether they have



nonempty intersection is completely determined by the relevant entry in Mn. Thus
the matrix Mn+1 has the following block form:

Mn+1 =

Mn 0n Mn

0n
T 1 1n

T

Mn 1n En

 ,

where 0n,1n denote column vectors of length 2n − 1, all of whose entries are 0, 1
respectively, and En is the (2n − 1)× (2n − 1) matrix, all of whose entries are 1. To
find det(Mn+1), we subtract the middle row from each of the rows below it. This will
not affect the lower left block, it will change the lower part of the middle column from
1n to 0n, and it will replace the lower right block En by a block of zeros. Then we
can expand the determinant using the middle column (whose only nonzero entry is
now the “central” 1) to get

det(Mn+1) = det

(
Mn Mn

Mn O

)
= − det

(
Mn O
Mn Mn

)
,

where the last step is carried out by switching the ith row with the (2n − 1 + i)th row
for all i = 1, 2, . . . , 2n − 1. (Because this is an odd number of row swaps, the sign of
the determinant is reversed.) Finally, the determinant of the block triangular matrix(
Mn O
Mn Mn

)
is equal to the product of the determinants of the diagonal blocks, so it

equals (det(Mn))2, and the result follows.

A3. Determine the greatest possible value of
10∑
i=1

cos(3xi) for real numbers x1, x2, . . . , x10

satisfying
10∑
i=1

cos(xi) = 0.

Answer. The maximum value is
480

49
.

Solution. Let zi = cos(xi). Then the real numbers z1, z2, . . . , z10 must satisfy
−1 ≤ zi ≤ 1, and the given restriction on the xi is equivalent to the additional
restriction z1 + z2 + · · ·+ z10 = 0 on the zi. Also, note that

cos(3xi) = cos(2xi) cos(xi)− sin(2xi) sin(xi) = (2 cos2(xi)− 1) cos(xi)− 2 sin2(xi) cos(xi)

= 2 cos3(xi)− cos(xi)− 2(1− cos2(xi)) cos(xi) = 4z3i − 3zi.

Thus we can rephrase the problem as follows: Find the maximum value of the
function f given by

f(z1, . . . , z10) =
10∑
i=1

(4z3i − 3zi) = 4
10∑
i=1

z3i

on the set

S = {(z1, . . . , z10) ∈ [−1, 1]10 | z1 + · · ·+ z10 = 0}.

Because f is continuous and S is closed and bounded (compact), f does take
on a maximum value on this set; suppose this occurs at (m1, . . . ,m10) ∈ S. Let



a = m1 +m2. If we fix z3 = m3, . . . , z10 = m10 and z1 + z2 = a, then the function

g(z) =
1

4
f(z, a− z,m3, . . . ,m10)− (m3

3 + · · ·+m3
10) = z3 + (a− z)3 = a3 − 3a2z + 3az2

has a global maximum at z = m1 on the interval for z that corresponds to
(z, a − z,m3, . . . ,m10) ∈ S, which is the interval [a − 1, 1] if a ≥ 0 and the interval
[−1, a+ 1] if a < 0. If a ≥ 0 that maximum occurs at both endpoints of the interval
(that is, when either z = 1 or a− z = 1), while if a < 0 the maximum occurs when
z = a − z = a/2. We can conclude that either (in the first case) one of m1,m2

equals 1 or (in the second case) m1 = m2. Repeating this argument for other pairs
of subscripts besides (1, 2), we see that whenever two of the mi are distinct, one of
them equals 1. So there are at most two distinct values among the mi, namely 1 and
one other value v. Suppose that 1 occurs d times among the mi, so that v occurs
10− d times. Then because m1 +m2 + · · ·+m10 = 0, we have d+ (10− d)v = 0, so
v = d/(d− 10) and the maximum value of f on S is

f(m1, . . . ,m10) = 4 · d · 13 + 4 · (10− d) ·
( d

d− 10

)3
= 4d− 4d3

(10− d)2
= h(d), say.

In order for v = d/(d− 10) to be in the interval [−1, 1], we must have 0 ≤ d ≤ 5. So
to finish, we can make a table of values

d h(d)
0 0
1 320/81
2 15/2
3 480/49
4 80/9
5 0

and read off that the maximum value is 480
49

= 939
49

, for d = 3. (This value occurs
for x1 = x2 = x3 = 0, x4 = x5 = · · · = x10 = arccos(−3/7), which corresponds to
z1 = z2 = z3 = 1, z4 = z5 = · · · = z10 = −3/7.)

A4. Let m and n be positive integers with gcd(m,n) = 1, and define

ak =

⌊
mk

n

⌋
−
⌊
m(k − 1)

n

⌋
for k = 1, 2, . . . , n. Suppose that g and h are elements in a group G and that

gha1gha2 · · · ghan = e,

where e is the identity element. Show that gh = hg. (As usual, bxc denotes the
greatest integer less than or equal to x.)

Solution. The proof is by induction on n. If n = 1, we have a1 = m and ghm = e,
so g = h−m and g, h commute. For the induction step, first consider the case that
m < n. Then each ak is 0 or 1, and a1 + · · ·+ an = m. The values k1, . . . km of k for
which ak = 1 are the smallest values for which

mk

n
≥ 1,

mk

n
≥ 2, . . . ,

mk

n
≥ m,



so they are

k1 =
⌈ n
m

⌉
, k2 =

⌈
2n

m

⌉
, . . . , km =

⌈mn
m

⌉
= n .

Thus the given relation gha1gha2 · · · ghan = e can be rewritten, by omitting all factors
h0, as

gk1hgk2−k1h · · · gkm−km−1h = e.

Taking the inverse of both sides, we get

h−1(g−1)km−km−1 · · ·h−1(g−1)k2−k1h−1(g−1)k1 = e.

We claim that this new relation is one of the original form, but with g and h replaced
by h−1 and g−1 respectively, and with the roles of m and n interchanged. Because
m < n, it will follow by the induction hypothesis that h−1 and g−1 commute, and
thus g and h commute. To prove the claim, note that the exponents of g−1 in the
new relation are

b1 = km − km−1, . . . , bm−1 = k2 − k1, bm = k1,

and so, with the convention k0 = 0, we have

bi = km−i+1 − km−i =

⌈
(m− i+ 1)n

m

⌉
−
⌈

(m− i)n
m

⌉
= −

⌊
−(m− i+ 1)n

m

⌋
+

⌊
−(m− i)n

m

⌋
=

⌊
in

m
− n

⌋
−
⌊

(i− 1)n

m
− n

⌋
=

⌊
in

m

⌋
−
⌊

(i− 1)n

m

⌋
,

as desired.
Now consider the remaining case, in which m > n. Write m = qn+r with 0 ≤ r < n.

We have

ak = bmk
n
c − bm(k−1)

n
c = qk + b rk

n
c − q(k − 1)− b r(k−1)

n
c = q + a′k

where a′k = b rk
n
c − b r(k−1)

n
c. If we set g′ = ghq then we have

g′ha
′
1g′ha

′
2 · · · g′ha′n = gha1gha2 · · · ghan = e.

This is again a relation of the original form, but with m replaced by r (and g
replaced by g′). So by the case considered above, g′ and h commute. As a result,
(gh)hq = g′h = hg′ = (hg)hq and it follows that gh = hg, completing the proof.

A5. Let f : R→ R be an infinitely differentiable function satisfying f(0) = 0, f(1) = 1,
and f(x) ≥ 0 for all x ∈ R. Show that there exist a positive integer n and a real
number x such that f (n)(x) < 0.
Solution. Suppose, to the contrary, that f (n)(x) ≥ 0 for all integers n ≥ 0 and all
x ∈ R. To begin, note that f has a minimum at x = 0, so f ′(0) = 0. Now we show by
induction on n that for every function f satisfying the given conditions and such that
f (n)(x) ≥ 0 for all n ≥ 0 and all x, we have f(2x) ≥ 2nf(x) for all n ≥ 0 and all x ≥ 0.
Since f ′ ≥ 0, we have f(2x) ≥ f(x) for x ≥ 0, showing the base case n = 0. Suppose



we have shown for some particular n that f(2x) ≥ 2nf(x) for all relevant functions
f and all x ≥ 0. Note that because f(0) = 0 and f(1) = 1, f ′(x) > 0 for some
x ∈ [0, 1]; because f ′ is nondecreasing, it follows that f ′(1) > 0. Therefore, we can
define a function g by g(x) = f ′(x)/f ′(1), and for this infinitely differentiable function
we have that g(0) = 0, g(1) = 1, and all derivatives of g are nonnegative. By the
induction hypothesis, we then have g(2x) ≥ 2ng(x), and therefore f ′(2x) ≥ 2nf ′(x),
for all x ≥ 0. Integrating with respect to x from 0 to y gives 1

2
f(2y) ≥ 2nf(y) for all

y ≥ 0, so this shows that f(2x) ≥ 2n+1f(x) for all x ≥ 0, completing the induction
proof. In particular, we now have f(2) ≥ 2nf(1) = 2n for all n ≥ 0, which is obviously
false. So it must be the case that f (n)(x) < 0 for some integer n ≥ 0 and some x ∈ R.

A6. Suppose that A,B,C, and D are distinct points in the Euclidean plane no three of
which lie on a line. Show that if the squares of the lengths of the line segments
AB,AC,AD,BC,BD, and CD are rational numbers, then the quotient

area(4ABC)

area(4ABD)

is a rational number.

NOTE: I don’t believe this is quite the final wording of this problem.

Solution. Let v,w, z be the displacement vectors
#    »

AB,
#    »

AC,
#    »

AD from A to the points
B,C,D respectively. Then the dot products v · v = |v|2, w ·w, (v −w) · (v −w)
are all rational, so

v ·w =
1

2
(v · v + w ·w − (v −w) · (v −w))

is also rational; similarly, v · z and w · z are rational.
Because A,B, and C are not collinear, v and w form a basis for R2, so there

are constants λ, µ ∈ R such that z = λv + µw. Then we have the system of linear
equations

v · z = (v · v)λ+ (v ·w)µ

w · z = (w · v)λ+ (w ·w)µ

for λ and µ. The determinant (v · v)(w ·w)− (v ·w)2 of the matrix of this system is
positive (because v and w are linearly independent) by the Cauchy-Schwarz inequality.
Thus, because all coefficients of the system are rational, λ and µ are also rational.
Now we can rewrite the desired quotient as

area(4ABC)

area(4ABD)
=
| det(v w)|/2
| det(v z)|/2

=
∣∣∣ det(v w)

λ det(v v) + µ det(v w)

∣∣∣ =
∣∣∣ 1
µ

∣∣∣,
a rational number. (Note that µ 6= 0 because A,B,D are not collinear.)

(The B section starts on the next page.)



B1. Let P be the set of vectors defined by

P =

{(
a
b

) ∣∣∣ 0 ≤ a ≤ 2, 0 ≤ b ≤ 100, and a, b ∈ Z
}
.

Find all v ∈ P such that the set P \ {v} obtained by omitting vector v from P can
be partitioned into two sets of equal size and equal sum.

Answer. The vectors v of the form

(
1
b

)
with b even, 0 ≤ b ≤ 100.

Solution. First note that if we add all the vectors in P by first summing over a for

fixed b, we get the sum of

(
3
3b

)
for 0 ≤ b ≤ 100, which is

(
303

3 · (1 + · · ·+ 100)

)
=(

303
3 · 50 · 101

)
. Thus if the set P \ {v} is to be partitioned into two sets of equal

sum, the vector

(
303

3 · 50 · 101

)
− v must have both coordinates even. For v =

(
a
b

)
,

this implies that a is odd and b is even, so because v ∈ P, we have a = 1, b even,
0 ≤ b ≤ 100. It remains to show that this necessary condition on v is also sufficient.

Identify each of the vectors w =

(
c
d

)
in P with the lattice point (c, d). Given a

particular vector v =

(
1
b

)
in P with b even, there are 302 lattice points in P \ {v}.

If we can number these points P1, P2, . . . , P302 such that the sum of the displacement
vectors

#       »

P1P2,
#       »

P3P4, . . . ,
#               »

P301P302 is zero, then we can partition P \ {v} into the set of
points Pi with i odd and the set of points Pi with i even, and those sets will have equal
size and equal sum. To do so, we first partition the set P \ {v} into 24 rectangular
sets of 4× 3 lattice points, along with a single 5× 3 rectangular set from which one
of the points in the middle column is missing. For the 4× 3 rectangular sets, we can
take three displacement vectors pointing up and three displacement vectors pointing
down, as shown in the first diagram below. For the 5 × 3 rectangular set with a
single point missing, there are (up to symmetry) two cases, depending on whether
the missing point is on an edge or at the center (the parity condition on b guarantees
that it will be either on an edge or at the center). These are shown in the second and
third diagrams below. As an example, if the 5× 3 rectangle is the set{(

a
b

) ∣∣∣ 0 ≤ a ≤ 2, 0 ≤ b ≤ 4, and a, b ∈ Z
}

and v =

(
1
0

)
is the missing point, then the second diagram corresponds to the

partition of the rectangular set minus that point into the two subsets of equal size
and equal sum

{(0, 0), (0, 2), (0, 4), (1, 2), (2, 4), (2, 2), (2, 1)} and

{(0, 1), (0, 3), (1, 4), (1, 1), (2, 3), (1, 3), (2, 0)},

which contain the starting and end points, respectively, of the displacement vectors
shown.



B2. Let n be a positive integer, and let fn(z) = n + (n − 1)z + (n − 2)z2 + · · · + zn−1.
Prove that fn has no roots in the closed unit disk {z ∈ C : |z| ≤ 1}.
Solution. If z is a root of fn, then 0 = (1− z)fn(z) = n−

∑n
j=1 z

j, so
∑n

j=1 z
j = n.

On the other hand, when |z| ≤ 1, we have

∣∣∣∣∣
n∑

j=1

zj

∣∣∣∣∣ ≤
n∑

j=1

|z|j ≤ n, with equality only

for z = 1. Because z = 1 is not a root of fn, we are done.

B3. Find all positive integers n < 10100 for which simultaneously n divides 2n,
n− 1 divides 2n − 1, and n− 2 divides 2n − 2.

Answer. n = 22, 24, 216, 2256.

Solution. We first prove that for positive integers a and b, 2a− 1 divides 2b− 1 if and
only if a divides b. If a divides b then we can write b = aq, and modulo 2a− 1 we then
have 2b − 1 = (2a)q − 1 ≡ 1q − 1 = 0. Conversely, suppose that 2a − 1 divides 2b − 1.
Let b = aq + r with 0 ≤ r < a; we then have 2b − 1 = 2r(2aq − 1) + (2r − 1). Because
2a − 1 divides 2b − 1 and 2aq − 1, it must also divide 2r − 1. Because 0 ≤ r < a, it
follows that r = 0, so a divides b.

A positive integer n divides 2n if and only if n is a power of 2. So we may assume that
n = 2m for some nonnegative integer m. Now n− 1 = 2m− 1 divides 2n− 1 = 22

m − 1
if and only if m divides 2m, so if and only if m is a power of 2. So we may assume
that m = 2l, that is, n = 22l , for some nonnegative integer l, and we have to find all
n < 10100 of this form for which n− 2 divides 2n − 2.

Note that n−2 = 2·(22l−1−1), so n−2 divides 2n−2 = 2·(2n−1−1) = 2·(222
l−1−1)

if and only if 2l − 1 divides 22l − 1, which is if and only if l divides 2l, that is, if and

only if l is a power of 2. We can write l = 2k, so that n = 22
2k

, and to finish we have
to find the values of k ≥ 0 for which n < 10100.

Suppose that n is a solution with n < 10100. Then we have 2m = n < 10100 <
(24)100 = 2400. It follows that m = 2l < 400 < 29, so l = 2k < 9 < 24 and thus

0 ≤ k ≤ 3. Conversely, 222
3

= 228 = 2256 < 2300 = (23)100 < 10100. So the solutions

are n = 222
k

with k = 0, 1, 2, 3; in other words, n is equal to 22, 24, 216 or 2256.

B4. Given a real number a, we define a sequence by x0 = 1, x1 = x2 = a, and xn+1 =
2xnxn−1 − xn−2 for n ≥ 2. Prove that if xn = 0 for some n, then the sequence is
periodic.

Solution. Let z be a (complex) root of the polynomial z2− 2az+ 1. Then z 6= 0, and

z satisfies 2az = z2 + 1, so a =
z + z−1

2
. If the Fibonacci numbers F0, F1, F2, . . . are



given, as usual, by F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 for n ≥ 1, then we see that

xn =
zFn + z−Fn

2

for n = 0, 1, 2. We now show by induction on n that this equation holds for all n. For
the induction step, assuming the equation is correct for n, n− 1, and n− 2, we have

xn+1 = 2xnxn−1 − xn−2

=
(zFn + z−Fn)(zFn−1 + z−Fn−1)− (zFn−2 + z−Fn−2)

2

=
zFn+Fn−1 + z−(Fn+Fn−1) + zFn−Fn−1 + z−(Fn−Fn−1) − (zFn−2 + z−Fn−2)

2

=
zFn+1 + z−Fn+1

2
,

because Fn − Fn−1 = Fn−2.
Suppose that xn = 0 for some n, say xm = 0. Then z2Fm = −1, so z is a dth root

of unity, where d = 4Fm. Now note that the Fibonacci sequence modulo d is periodic:
There are only finitely many (specifically, d2) possibilities for a pair (Fi mod d, Fi+1

mod d) of successive Fibonacci numbers modulo d, and when a pair reoccurs, say
(Fi mod d, Fi+1 mod d) = (Fj mod d, Fj+1 mod d) with i < j, it is straightforward to
show by induction that Fi+k = Fj+k mod d for all k, including negative k for which

i + k ≥ 0. But then, because xn =
zFn + z−Fn

2
is determined by the value of Fn

modulo d, the sequence (xn) is also periodic, and we are done.

B5. Let f = (f1, f2) be a function from R2 to R2 with continuous partial derivatives ∂fi
∂xj

that are positive everywhere. Suppose that

∂f1
∂x1

∂f2
∂x2
− 1

4

(
∂f1
∂x2

+
∂f2
∂x1

)2

> 0

everywhere. Prove that f is one-to-one.

Solution. Consider the Jacobian matrix

J = J(x1, x2) =


∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


and the related symmetric matrix

A =
1

2
(J + JT ) =


∂f1
∂x1

1

2

(
∂f1
∂x2

+
∂f2
∂x1

)
1

2

(
∂f2
∂x1

+
∂f1
∂x2

)
∂f2
∂x2

 .

From the givens, the entries of A are positive everywhere, and the determinant of A is
also positive everywhere. So the eigenvalues of A are positive (because their sum tr(A)
and their product are both positive), and so A is positive definite. That is, for any
nonzero vector v, we have vTAv = v ·Av > 0, so vT (J+JT )v = vTJv+(vTJv)T > 0.



But the scalar vTJv is its own transpose, showing that vTJv > 0 at all points in R2

and for all nonzero vectors v.
We now show that if P and Q are distinct points in R2, then the dot product of the

displacement vectors
#    »

PQ and
#                    »

f(P )f(Q) is positive; it then follows that f(P ) 6= f(Q),
showing that f is one-to-one. In doing so, we will identify points in R2 with vectors.

In particular, the displacement vector
#                    »

f(P )f(Q) can be written as

#                    »

f(P )f(Q) = f(Q)− f(P ) = f(P + t
#    »

PQ)

∣∣∣∣1
t=0

=

∫ 1

0

d

dt

[
f(P + t

#    »

PQ)
]
dt

=

∫ 1

0

J(P + t
#    »

PQ)
#    »

PQ dt,

using the multivariable chain rule. Thus the dot product of this vector and
#    »

PQ is

#    »

PQ ·
#                    »

f(P )f(Q) =
#    »

PQ ·
(∫ 1

0

J(P + t
#    »

PQ)
#    »

PQ dt
)

=

∫ 1

0

vTJ(P + tv)v dt,

where v =
#    »

PQ. By our earlier observation, the integrand is positive for all t, and so
the integral is also, completing the proof.

B6. Let S be the set of sequences of length 2018 whose terms are in the set {1, 2, 3, 4, 5, 6, 10}
and sum to 3860. Prove that the cardinality of S is at most

23860 ·
(

2018

2048

)2018

.

Solution. Note that the binary expansion of 2018 is

2018 = 1024 + 512 + 256 + 128 + 64 + 32 + 2 = 210 + 29 + 28 + 27 + 26 + 25 + 21,

and consequently

2018

2048
=

2018

211
= 2−1 + 2−2 + 2−3 + 2−4 + 2−5 + 2−6 + 2−10.

We can interpret this as the probability that a random variable X takes on a value in
the set A = {1, 2, 3, 4, 5, 6, 10}, if the possible values of the variable are all the positive

integers, and the probability of taking on the value k is 2−k. (Note that
∞∑
k=1

2−k = 1,

so this is a consistent assignment of probabilities.)

Now consider a sequence X = (Xn)
2018

n=1 of independent random variables that
each take positive integer values k with probability 2−k. For any given sequence
(sn) ∈ S, the probability that Xn = sn for all n (with 1 ≤ n ≤ 2018) equals
2−s12−s2 · · · 2−s2018 = 2−

∑
sn = 2−3860. Therefore, the probability that the sequence

(Xn) will be in S is

P(X ∈ S) = |S| · 2−3860.



On the other hand, this probability is less than the probability that each Xn takes on
a value in A; as we have seen, for any Xn individually that probability is 2018/2048,
and so because the Xn are independent, the probability that they will all take on
values in A is (2018/2048)2018. So we have the inequality

|S| · 2−3860 = P(X ∈ S) <

(
2018

2048

)2018

,

and the desired result follows.


