A1. Find all ordered pairs $(a, b)$ of positive integers for which

$$
\frac{1}{a}+\frac{1}{b}=\frac{3}{2018} .
$$

Answer. The six ordered pairs are $(1009,2018),(2018,1009),(1009 \cdot 337,674)=$ $(350143,674),(1009 \cdot 1346,673)=(1358114,673),(674,1009 \cdot 337)=(674,350143)$, and $(673,1009 \cdot 1346)=(673,1358114)$.
Solution. First rewrite the equation as $2 \cdot 1009(a+b)=3 a b$, and note that 1009 is prime, so at least one of $a$ and $b$ must be divisible by 1009. If both $a$ and $b$ are divisible by 1009 , say with $a=1009 q, b=1009 r$, then we have $2(q+r)=3 q r$. But $q r \geq q+r$ for integers $q, r \geq 2$, so at least one of $q, r$ is 1 . This leads to the solutions $q=1, r=2$ and $r=1, q=2$, corresponding to the ordered pairs $(a, b)=(1009,2018)$ and $(a, b)=(2018,1009)$.

In the remaining case, just one of $a$ and $b$ is divisible by 1009 , say $a=1009 q$. This yields $2 \cdot 1009(1009 q+b)=3 \cdot 1009 q b$, which can be rewritten as
$2 \cdot 1009 q=(3 q-2) b$. Because the prime 1009 does not divide $b$, it must divide $3 q-2$; say $3 q-2=1009 k$. Then $1009 k+2=3 \cdot 336 k+k+2$ is divisible by 3 , so $k \equiv 1(\bmod 3)$. For $k=1$, we get $q=337, a=1009 \cdot 337, b=2 q=674$. For $k=4$, we get $q=1346, a=1009 \cdot 1346, b=q / 2=673$. We now show there is no solution with $k>4$. Assuming there is one, the corresponding value of $q$ is greater than 1346 , and so the corresponding

$$
b=\frac{2 q}{3 q-2} \cdot 1009
$$

is less than 673 . Because $b$ is an integer, it follows that $b \leq 672$, which implies

$$
\frac{1}{b} \geq \frac{1}{672}>\frac{3}{2018}, \quad \text { contradicting } \frac{1}{a}+\frac{1}{b}=\frac{3}{2018}
$$

Finally, along with the two ordered pairs $(a, b)$ for which $a$ is divisible by 1009 and $b$ is not, we get two more ordered pairs by interchanging $a$ and $b$.
A2. Let $S_{1}, S_{2}, \ldots, S_{2^{n}-1}$ be the nonempty subsets of $\{1,2, \ldots, n\}$ in some order, and let $M$ be the $\left(2^{n}-1\right) \times\left(2^{n}-1\right)$ matrix whose $(i, j)$ entry is

$$
m_{i j}= \begin{cases}0 & \text { if } S_{i} \cap S_{j}=\emptyset \\ 1 & \text { otherwise }\end{cases}
$$

Calculate the determinant of $M$.
Answer. The determinant is 1 if $n=1$ and -1 if $n>1$.
Solution. Note that if we take the nonempty subsets of $\{1,2, \ldots, n\}$ in a different order, this will replace the matrix $M$ by $P M P^{-1}$ for some permutation matrix $P$, and the determinant will stay unchanged. Denote the matrix $M$ by $M_{n}$ to indicate its dependence on $n$. Then we will show that $\operatorname{det}\left(M_{n+1}\right)=-\left(\operatorname{det}\left(M_{n}\right)\right)^{2}$, from which the given answer follows by induction on $n$ because $M_{1}$ has the single entry 1 .

Using the order $S_{1}, S_{2}, \ldots, S_{2^{n}-1}$ for the nonempty subsets of $\{1,2, \ldots, n\}$, we arrange the nonempty subsets of $\{1,2, \ldots, n+1\}$ in the order

$$
S_{1}, S_{2}, \ldots, S_{2^{n}-1},\{n+1\}, S_{1} \cup\{n+1\}, S_{2} \cup\{n+1\}, \ldots, S_{2^{n}-1} \cup\{n+1\}
$$

Then any of the first $2^{n}-1$ subsets has empty intersection with $\{n+1\}$, any two of the last $2^{n}$ subsets have nonempty intersection because they both contain $n+1$, and for any other choice of two nonempty subsets of $\{1,2, \ldots, n+1\}$, whether they have
nonempty intersection is completely determined by the relevant entry in $M_{n}$. Thus the matrix $M_{n+1}$ has the following block form:

$$
M_{n+1}=\left(\begin{array}{ccc}
M_{n} & \mathbf{0}_{\mathbf{n}} & M_{n} \\
\mathbf{0}_{\mathbf{n}}^{T} & 1 & \mathbf{1}_{\mathbf{n}}^{T} \\
M_{n} & \mathbf{1}_{\mathbf{n}} & E_{n}
\end{array}\right),
$$

where $\mathbf{0}_{\mathbf{n}}, \mathbf{1}_{\mathbf{n}}$ denote column vectors of length $2^{n}-1$, all of whose entries are 0,1 respectively, and $E_{n}$ is the $\left(2^{n}-1\right) \times\left(2^{n}-1\right)$ matrix, all of whose entries are 1 . To find $\operatorname{det}\left(M_{n+1}\right)$, we subtract the middle row from each of the rows below it. This will not affect the lower left block, it will change the lower part of the middle column from $\mathbf{1}_{\mathbf{n}}$ to $\mathbf{0}_{\mathbf{n}}$, and it will replace the lower right block $E_{n}$ by a block of zeros. Then we can expand the determinant using the middle column (whose only nonzero entry is now the "central" 1) to get

$$
\operatorname{det}\left(M_{n+1}\right)=\operatorname{det}\left(\begin{array}{cc}
M_{n} & M_{n} \\
M_{n} & O
\end{array}\right)=-\operatorname{det}\left(\begin{array}{cc}
M_{n} & O \\
M_{n} & M_{n}
\end{array}\right)
$$

where the last step is carried out by switching the $i$ th row with the $\left(2^{n}-1+i\right)$ th row for all $i=1,2, \ldots, 2^{n}-1$. (Because this is an odd number of row swaps, the sign of the determinant is reversed.) Finally, the determinant of the block triangular matrix $\left(\begin{array}{cc}M_{n} & O \\ M_{n} & M_{n}\end{array}\right)$ is equal to the product of the determinants of the diagonal blocks, so it equals $\left(\operatorname{det}\left(M_{n}\right)\right)^{2}$, and the result follows.

A3. Determine the greatest possible value of $\sum_{i=1}^{10} \cos \left(3 x_{i}\right)$ for real numbers $x_{1}, x_{2}, \ldots, x_{10}$ satisfying $\sum_{i=1}^{10} \cos \left(x_{i}\right)=0$.
Answer. The maximum value is $\frac{480}{49}$.
Solution. Let $z_{i}=\cos \left(x_{i}\right)$. Then the real numbers $z_{1}, z_{2}, \ldots, z_{10}$ must satisfy $-1 \leq z_{i} \leq 1$, and the given restriction on the $x_{i}$ is equivalent to the additional restriction $z_{1}+z_{2}+\cdots+z_{10}=0$ on the $z_{i}$. Also, note that

$$
\begin{aligned}
\cos \left(3 x_{i}\right) & =\cos \left(2 x_{i}\right) \cos \left(x_{i}\right)-\sin \left(2 x_{i}\right) \sin \left(x_{i}\right)=\left(2 \cos ^{2}\left(x_{i}\right)-1\right) \cos \left(x_{i}\right)-2 \sin ^{2}\left(x_{i}\right) \cos \left(x_{i}\right) \\
& =2 \cos ^{3}\left(x_{i}\right)-\cos \left(x_{i}\right)-2\left(1-\cos ^{2}\left(x_{i}\right)\right) \cos \left(x_{i}\right)=4 z_{i}^{3}-3 z_{i} .
\end{aligned}
$$

Thus we can rephrase the problem as follows: Find the maximum value of the function $f$ given by

$$
f\left(z_{1}, \ldots, z_{10}\right)=\sum_{i=1}^{10}\left(4 z_{i}^{3}-3 z_{i}\right)=4 \sum_{i=1}^{10} z_{i}^{3}
$$

on the set

$$
S=\left\{\left(z_{1}, \ldots, z_{10}\right) \in[-1,1]^{10} \mid z_{1}+\cdots+z_{10}=0\right\}
$$

Because $f$ is continuous and $S$ is closed and bounded (compact), $f$ does take on a maximum value on this set; suppose this occurs at $\left(m_{1}, \ldots, m_{10}\right) \in S$. Let
$a=m_{1}+m_{2}$. If we fix $z_{3}=m_{3}, \ldots, z_{10}=m_{10}$ and $z_{1}+z_{2}=a$, then the function
$g(z)=\frac{1}{4} f\left(z, a-z, m_{3}, \ldots, m_{10}\right)-\left(m_{3}^{3}+\cdots+m_{10}^{3}\right)=z^{3}+(a-z)^{3}=a^{3}-3 a^{2} z+3 a z^{2}$
has a global maximum at $z=m_{1}$ on the interval for $z$ that corresponds to
$\left(z, a-z, m_{3}, \ldots, m_{10}\right) \in S$, which is the interval $[a-1,1]$ if $a \geq 0$ and the interval $[-1, a+1]$ if $a<0$. If $a \geq 0$ that maximum occurs at both endpoints of the interval (that is, when either $z=1$ or $a-z=1$ ), while if $a<0$ the maximum occurs when $z=a-z=a / 2$. We can conclude that either (in the first case) one of $m_{1}, m_{2}$ equals 1 or (in the second case) $m_{1}=m_{2}$. Repeating this argument for other pairs of subscripts besides $(1,2)$, we see that whenever two of the $m_{i}$ are distinct, one of them equals 1 . So there are at most two distinct values among the $m_{i}$, namely 1 and one other value $v$. Suppose that 1 occurs $d$ times among the $m_{i}$, so that $v$ occurs $10-d$ times. Then because $m_{1}+m_{2}+\cdots+m_{10}=0$, we have $d+(10-d) v=0$, so $v=d /(d-10)$ and the maximum value of $f$ on $S$ is

$$
f\left(m_{1}, \ldots, m_{10}\right)=4 \cdot d \cdot 1^{3}+4 \cdot(10-d) \cdot\left(\frac{d}{d-10}\right)^{3}=4 d-\frac{4 d^{3}}{(10-d)^{2}}=h(d), \text { say. }
$$

In order for $v=d /(d-10)$ to be in the interval $[-1,1]$, we must have $0 \leq d \leq 5$. So to finish, we can make a table of values

| $d$ | $h(d)$ |
| :---: | :---: |
| 0 | 0 |
| 1 | $320 / 81$ |
| 2 | $15 / 2$ |
| 3 | $480 / 49$ |
| 4 | $80 / 9$ |
| 5 | 0 |

and read off that the maximum value is $\frac{480}{49}=9 \frac{39}{49}$, for $d=3$. (This value occurs for $x_{1}=x_{2}=x_{3}=0, x_{4}=x_{5}=\cdots=x_{10}=\arccos (-3 / 7)$, which corresponds to $z_{1}=z_{2}=z_{3}=1, z_{4}=z_{5}=\cdots=z_{10}=-3 / 7$.)

A4. Let $m$ and $n$ be positive integers with $\operatorname{gcd}(m, n)=1$, and define

$$
a_{k}=\left\lfloor\frac{m k}{n}\right\rfloor-\left\lfloor\frac{m(k-1)}{n}\right\rfloor
$$

for $k=1,2, \ldots, n$. Suppose that $g$ and $h$ are elements in a group $G$ and that

$$
g h^{a_{1}} g h^{a_{2}} \cdots g h^{a_{n}}=e,
$$

where $e$ is the identity element. Show that $g h=h g$. (As usual, $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$.)
Solution. The proof is by induction on $n$. If $n=1$, we have $a_{1}=m$ and $g h^{m}=e$, so $g=h^{-m}$ and $g, h$ commute. For the induction step, first consider the case that $m<n$. Then each $a_{k}$ is 0 or 1 , and $a_{1}+\cdots+a_{n}=m$. The values $k_{1}, \ldots k_{m}$ of $k$ for which $a_{k}=1$ are the smallest values for which

$$
\frac{m k}{n} \geq 1, \frac{m k}{n} \geq 2, \ldots, \frac{m k}{n} \geq m
$$

so they are

$$
k_{1}=\left\lceil\frac{n}{m}\right\rceil, k_{2}=\left\lceil\frac{2 n}{m}\right\rceil, \ldots, k_{m}=\left\lceil\frac{m n}{m}\right\rceil=n .
$$

Thus the given relation $g h^{a_{1}} g h^{a_{2}} \cdots g h^{a_{n}}=e$ can be rewritten, by omitting all factors $h^{0}$, as

$$
g^{k_{1}} h g^{k_{2}-k_{1}} h \cdots g^{k_{m}-k_{m-1}} h=e
$$

Taking the inverse of both sides, we get

$$
h^{-1}\left(g^{-1}\right)^{k_{m}-k_{m-1}} \cdots h^{-1}\left(g^{-1}\right)^{k_{2}-k_{1}} h^{-1}\left(g^{-1}\right)^{k_{1}}=e .
$$

We claim that this new relation is one of the original form, but with $g$ and $h$ replaced by $h^{-1}$ and $g^{-1}$ respectively, and with the roles of $m$ and $n$ interchanged. Because $m<n$, it will follow by the induction hypothesis that $h^{-1}$ and $g^{-1}$ commute, and thus $g$ and $h$ commute. To prove the claim, note that the exponents of $g^{-1}$ in the new relation are

$$
b_{1}=k_{m}-k_{m-1}, \ldots, b_{m-1}=k_{2}-k_{1}, b_{m}=k_{1},
$$

and so, with the convention $k_{0}=0$, we have

$$
\begin{aligned}
b_{i}=k_{m-i+1}-k_{m-i} & =\left\lceil\frac{(m-i+1) n}{m}\right\rceil-\left\lceil\frac{(m-i) n}{m}\right\rceil \\
& =-\left\lfloor-\frac{(m-i+1) n}{m}\right\rfloor+\left\lfloor-\frac{(m-i) n}{m}\right\rfloor \\
& =\left\lfloor\frac{i n}{m}-n\right\rfloor-\left\lfloor\frac{(i-1) n}{m}-n\right\rfloor \\
& =\left\lfloor\frac{i n}{m}\right\rfloor-\left\lfloor\frac{(i-1) n}{m}\right\rfloor,
\end{aligned}
$$

as desired.
Now consider the remaining case, in which $m>n$. Write $m=q n+r$ with $0 \leq r<n$. We have

$$
a_{k}=\left\lfloor\frac{m k}{n}\right\rfloor-\left\lfloor\frac{m(k-1)}{n}\right\rfloor=q k+\left\lfloor\frac{r k}{n}\right\rfloor-q(k-1)-\left\lfloor\frac{r(k-1)}{n}\right\rfloor=q+a_{k}^{\prime}
$$

where $a_{k}^{\prime}=\left\lfloor\frac{r k}{n}\right\rfloor-\left\lfloor\frac{r(k-1)}{n}\right\rfloor$. If we set $g^{\prime}=g h^{q}$ then we have

$$
g^{\prime} h^{a_{1}^{\prime}} g^{\prime} h^{a_{2}^{\prime}} \cdots g^{\prime} h^{a_{n}^{\prime}}=g h^{a_{1}} g h^{a_{2}} \cdots g h^{a_{n}}=e
$$

This is again a relation of the original form, but with $m$ replaced by $r$ (and $g$ replaced by $g^{\prime}$ ). So by the case considered above, $g^{\prime}$ and $h$ commute. As a result, $(g h) h^{q}=g^{\prime} h=h g^{\prime}=(h g) h^{q}$ and it follows that $g h=h g$, completing the proof.

A5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function satisfying $f(0)=0, f(1)=1$, and $f(x) \geq 0$ for all $x \in \mathbb{R}$. Show that there exist a positive integer $n$ and a real number $x$ such that $f^{(n)}(x)<0$.
Solution. Suppose, to the contrary, that $f^{(n)}(x) \geq 0$ for all integers $n \geq 0$ and all $x \in \mathbb{R}$. To begin, note that $f$ has a minimum at $x=0$, so $f^{\prime}(0)=0$. Now we show by induction on $n$ that for every function $f$ satisfying the given conditions and such that $f^{(n)}(x) \geq 0$ for all $n \geq 0$ and all $x$, we have $f(2 x) \geq 2^{n} f(x)$ for all $n \geq 0$ and all $x \geq 0$. Since $f^{\prime} \geq 0$, we have $f(2 x) \geq f(x)$ for $x \geq 0$, showing the base case $n=0$. Suppose
we have shown for some particular $n$ that $f(2 x) \geq 2^{n} f(x)$ for all relevant functions $f$ and all $x \geq 0$. Note that because $f(0)=0$ and $f(1)=1, f^{\prime}(x)>0$ for some $x \in[0,1]$; because $f^{\prime}$ is nondecreasing, it follows that $f^{\prime}(1)>0$. Therefore, we can define a function $g$ by $g(x)=f^{\prime}(x) / f^{\prime}(1)$, and for this infinitely differentiable function we have that $g(0)=0, g(1)=1$, and all derivatives of $g$ are nonnegative. By the induction hypothesis, we then have $g(2 x) \geq 2^{n} g(x)$, and therefore $f^{\prime}(2 x) \geq 2^{n} f^{\prime}(x)$, for all $x \geq 0$. Integrating with respect to $x$ from 0 to $y$ gives $\frac{1}{2} f(2 y) \geq 2^{n} f(y)$ for all $y \geq 0$, so this shows that $f(2 x) \geq 2^{n+1} f(x)$ for all $x \geq 0$, completing the induction proof. In particular, we now have $f(2) \geq 2^{n} f(1)=2^{n}$ for all $n \geq 0$, which is obviously false. So it must be the case that $f^{(n)}(x)<0$ for some integer $n \geq 0$ and some $x \in \mathbb{R}$.

A6. Suppose that $A, B, C$, and $D$ are distinct points in the Euclidean plane no three of which lie on a line. Show that if the squares of the lengths of the line segments $A B, A C, A D, B C, B D$, and $C D$ are rational numbers, then the quotient

$$
\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle A B D)}
$$

is a rational number.
NOTE: I don't believe this is quite the final wording of this problem.
Solution. Let $\mathbf{v}, \mathbf{w}, \mathbf{z}$ be the displacement vectors $\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$ from $A$ to the points $B, C, D$ respectively. Then the dot products $\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}, \mathbf{w} \cdot \mathbf{w},(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}-\mathbf{w})$ are all rational, so

$$
\mathbf{v} \cdot \mathbf{w}=\frac{1}{2}(\mathbf{v} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{w}-(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}-\mathbf{w}))
$$

is also rational; similarly, $\mathbf{v} \cdot \mathbf{z}$ and $\mathbf{w} \cdot \mathbf{z}$ are rational.
Because $A, B$, and $C$ are not collinear, $\mathbf{v}$ and $\mathbf{w}$ form a basis for $\mathbb{R}^{2}$, so there are constants $\lambda, \mu \in \mathbb{R}$ such that $\mathbf{z}=\lambda \mathbf{v}+\mu \mathbf{w}$. Then we have the system of linear equations

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{z} & =(\mathbf{v} \cdot \mathbf{v}) \lambda+(\mathbf{v} \cdot \mathbf{w}) \mu \\
\mathbf{w} \cdot \mathbf{z} & =(\mathbf{w} \cdot \mathbf{v}) \lambda+(\mathbf{w} \cdot \mathbf{w}) \mu
\end{aligned}
$$

for $\lambda$ and $\mu$. The determinant $(\mathbf{v} \cdot \mathbf{v})(\mathbf{w} \cdot \mathbf{w})-(\mathbf{v} \cdot \mathbf{w})^{2}$ of the matrix of this system is positive (because $\mathbf{v}$ and $\mathbf{w}$ are linearly independent) by the Cauchy-Schwarz inequality. Thus, because all coefficients of the system are rational, $\lambda$ and $\mu$ are also rational. Now we can rewrite the desired quotient as

$$
\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle A B D)}=\frac{|\operatorname{det}(\mathbf{v} \mathbf{w})| / 2}{|\operatorname{det}(\mathbf{v} \mathbf{z})| / 2}=\left|\frac{\operatorname{det}(\mathbf{v} \mathbf{w})}{\lambda \operatorname{det}(\mathbf{v} \mathbf{v})+\mu \operatorname{det}(\mathbf{v} \mathbf{w})}\right|=\left|\frac{1}{\mu}\right|
$$

a rational number. (Note that $\mu \neq 0$ because $A, B, D$ are not collinear.)
(The B section starts on the next page.)

B1. Let $\mathcal{P}$ be the set of vectors defined by

$$
\mathcal{P}=\left\{\left.\binom{a}{b} \right\rvert\, 0 \leq a \leq 2,0 \leq b \leq 100, \text { and } a, b \in \mathbb{Z}\right\} .
$$

Find all $\mathbf{v} \in \mathcal{P}$ such that the set $\mathcal{P} \backslash\{\mathbf{v}\}$ obtained by omitting vector $\mathbf{v}$ from $\mathcal{P}$ can be partitioned into two sets of equal size and equal sum.
Answer. The vectors $\mathbf{v}$ of the form $\binom{1}{b}$ with $b$ even, $0 \leq b \leq 100$.
Solution. First note that if we add all the vectors in $\mathcal{P}$ by first summing over $a$ for fixed $b$, we get the sum of $\binom{3}{3 b}$ for $0 \leq b \leq 100$, which is $\binom{303}{3 \cdot(1+\cdots+100)}=$ $\binom{303}{3 \cdot 50 \cdot 101}$. Thus if the set $\mathcal{P} \backslash\{\mathbf{v}\}$ is to be partitioned into two sets of equal sum, the vector $\binom{303}{3 \cdot 50 \cdot 101}-\mathbf{v}$ must have both coordinates even. For $\mathbf{v}=\binom{a}{b}$, this implies that $a$ is odd and $b$ is even, so because $\mathbf{v} \in \mathcal{P}$, we have $a=1, b$ even, $0 \leq b \leq 100$. It remains to show that this necessary condition on $\mathbf{v}$ is also sufficient. Identify each of the vectors $\mathbf{w}=\binom{c}{d}$ in $\mathcal{P}$ with the lattice point $(c, d)$. Given a particular vector $\mathbf{v}=\binom{1}{b}$ in $\mathcal{P}$ with $b$ even, there are 302 lattice points in $\mathcal{P} \backslash\{\mathbf{v}\}$. If we can number these points $P_{1}, P_{2}, \ldots, P_{302}$ such that the sum of the displacement vectors $\overrightarrow{P_{1} P_{2}}, \overrightarrow{P_{3} P_{4}}, \ldots, \overrightarrow{P_{301} P_{302}}$ is zero, then we can partition $\mathcal{P} \backslash\{\mathbf{v}\}$ into the set of points $P_{i}$ with $i$ odd and the set of points $P_{i}$ with $i$ even, and those sets will have equal size and equal sum. To do so, we first partition the set $\mathcal{P} \backslash\{\mathbf{v}\}$ into 24 rectangular sets of $4 \times 3$ lattice points, along with a single $5 \times 3$ rectangular set from which one of the points in the middle column is missing. For the $4 \times 3$ rectangular sets, we can take three displacement vectors pointing up and three displacement vectors pointing down, as shown in the first diagram below. For the $5 \times 3$ rectangular set with a single point missing, there are (up to symmetry) two cases, depending on whether the missing point is on an edge or at the center (the parity condition on $b$ guarantees that it will be either on an edge or at the center). These are shown in the second and third diagrams below. As an example, if the $5 \times 3$ rectangle is the set

$$
\left\{\left.\binom{a}{b} \right\rvert\, 0 \leq a \leq 2,0 \leq b \leq 4, \text { and } a, b \in \mathbb{Z}\right\}
$$

and $\mathbf{v}=\binom{1}{0}$ is the missing point, then the second diagram corresponds to the partition of the rectangular set minus that point into the two subsets of equal size and equal sum

$$
\begin{aligned}
& \{(0,0),(0,2),(0,4),(1,2),(2,4),(2,2),(2,1)\} \quad \text { and } \\
& \{(0,1),(0,3),(1,4),(1,1),(2,3),(1,3),(2,0)\},
\end{aligned}
$$

which contain the starting and end points, respectively, of the displacement vectors shown.


B2. Let $n$ be a positive integer, and let $f_{n}(z)=n+(n-1) z+(n-2) z^{2}+\cdots+z^{n-1}$. Prove that $f_{n}$ has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.
Solution. If $z$ is a root of $f_{n}$, then $0=(1-z) f_{n}(z)=n-\sum_{j=1}^{n} z^{j}$, so $\sum_{j=1}^{n} z^{j}=n$. On the other hand, when $|z| \leq 1$, we have $\left|\sum_{j=1}^{n} z^{j}\right| \leq \sum_{j=1}^{n}|z|^{j} \leq n$, with equality only for $z=1$. Because $z=1$ is not a root of $f_{n}$, we are done.

B3. Find all positive integers $n<10^{100}$ for which simultaneously $n$ divides $2^{n}$, $n-1$ divides $2^{n}-1$, and $n-2$ divides $2^{n}-2$.
Answer. $n=2^{2}, 2^{4}, 2^{16}, 2^{256}$.
Solution. We first prove that for positive integers $a$ and $b, 2^{a}-1$ divides $2^{b}-1$ if and only if $a$ divides $b$. If $a$ divides $b$ then we can write $b=a q$, and modulo $2^{a}-1$ we then have $2^{b}-1=\left(2^{a}\right)^{q}-1 \equiv 1^{q}-1=0$. Conversely, suppose that $2^{a}-1$ divides $2^{b}-1$. Let $b=a q+r$ with $0 \leq r<a$; we then have $2^{b}-1=2^{r}\left(2^{a q}-1\right)+\left(2^{r}-1\right)$. Because $2^{a}-1$ divides $2^{b}-1$ and $2^{a q}-1$, it must also divide $2^{r}-1$. Because $0 \leq r<a$, it follows that $r=0$, so $a$ divides $b$.

A positive integer $n$ divides $2^{n}$ if and only if $n$ is a power of 2 . So we may assume that $n=2^{m}$ for some nonnegative integer $m$. Now $n-1=2^{m}-1$ divides $2^{n}-1=2^{2^{m}}-1$ if and only if $m$ divides $2^{m}$, so if and only if $m$ is a power of 2 . So we may assume that $m=2^{l}$, that is, $n=2^{2^{l}}$, for some nonnegative integer $l$, and we have to find all $n<10^{100}$ of this form for which $n-2$ divides $2^{n}-2$.

Note that $n-2=2 \cdot\left(2^{2^{l}-1}-1\right)$, so $n-2$ divides $2^{n}-2=2 \cdot\left(2^{n-1}-1\right)=2 \cdot\left(2^{2^{2^{l}}-1}-1\right)$ if and only if $2^{l}-1$ divides $2^{2^{l}}-1$, which is if and only if $l$ divides $2^{l}$, that is, if and only if $l$ is a power of 2 . We can write $l=2^{k}$, so that $n=2^{2^{2^{k}}}$, and to finish we have to find the values of $k \geq 0$ for which $n<10^{100}$.

Suppose that $n$ is a solution with $n<10^{100}$. Then we have $2^{m}=n<10^{100}<$ $\left(2^{4}\right)^{100}=2^{400}$. It follows that $m=2^{l}<400<2^{9}$, so $l=2^{k}<9<2^{4}$ and thus $0 \leq k \leq 3$. Conversely, $2^{2^{2^{3}}}=2^{2^{8}}=2^{256}<2^{300}=\left(2^{3}\right)^{100}<10^{100}$. So the solutions are $n=2^{2^{2^{k}}}$ with $k=0,1,2,3$; in other words, $n$ is equal to $2^{2}, 2^{4}, 2^{16}$ or $2^{256}$.

B4. Given a real number $a$, we define a sequence by $x_{0}=1, x_{1}=x_{2}=a$, and $x_{n+1}=$ $2 x_{n} x_{n-1}-x_{n-2}$ for $n \geq 2$. Prove that if $x_{n}=0$ for some $n$, then the sequence is periodic.
Solution. Let $z$ be a (complex) root of the polynomial $z^{2}-2 a z+1$. Then $z \neq 0$, and $z$ satisfies $2 a z=z^{2}+1$, so $a=\frac{z+z^{-1}}{2}$. If the Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are
given, as usual, by $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$, then we see that

$$
x_{n}=\frac{z^{F_{n}}+z^{-F_{n}}}{2}
$$

for $n=0,1,2$. We now show by induction on $n$ that this equation holds for all $n$. For the induction step, assuming the equation is correct for $n, n-1$, and $n-2$, we have

$$
\begin{aligned}
x_{n+1} & =2 x_{n} x_{n-1}-x_{n-2} \\
& =\frac{\left(z^{F_{n}}+z^{-F_{n}}\right)\left(z^{F_{n-1}}+z^{-F_{n-1}}\right)-\left(z^{F_{n-2}}+z^{-F_{n-2}}\right)}{2} \\
& =\frac{z^{F_{n}+F_{n-1}}+z^{-\left(F_{n}+F_{n-1}\right)}+z^{F_{n}-F_{n-1}}+z^{-\left(F_{n}-F_{n-1}\right)}-\left(z^{F_{n-2}}+z^{\left.-F_{n-2}\right)}\right.}{2} \\
& =\frac{z^{F_{n+1}}+z^{-F_{n+1}}}{2},
\end{aligned}
$$

because $F_{n}-F_{n-1}=F_{n-2}$.
Suppose that $x_{n}=0$ for some $n$, say $x_{m}=0$. Then $z^{2 F_{m}}=-1$, so $z$ is a $d$ th root of unity, where $d=4 F_{m}$. Now note that the Fibonacci sequence modulo $d$ is periodic: There are only finitely many (specifically, $d^{2}$ ) possibilities for a pair ( $F_{i} \bmod d, F_{i+1}$ $\bmod d$ ) of successive Fibonacci numbers modulo $d$, and when a pair reoccurs, say $\left(F_{i} \bmod d, F_{i+1} \bmod d\right)=\left(F_{j} \bmod d, F_{j+1} \bmod d\right)$ with $i<j$, it is straightforward to show by induction that $F_{i+k}=F_{j+k} \bmod d$ for all $k$, including negative $k$ for which $i+k \geq 0$. But then, because $x_{n}=\frac{z^{F_{n}}+z^{-F_{n}}}{2}$ is determined by the value of $F_{n}$ modulo $d$, the sequence $\left(x_{n}\right)$ is also periodic, and we are done.

B5. Let $f=\left(f_{1}, f_{2}\right)$ be a function from $\mathbb{R}^{2}$ to $\mathbb{R}^{2}$ with continuous partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ that are positive everywhere. Suppose that

$$
\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{2}}{\partial x_{2}}-\frac{1}{4}\left(\frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial f_{2}}{\partial x_{1}}\right)^{2}>0
$$

everywhere. Prove that $f$ is one-to-one.
Solution. Consider the Jacobian matrix

$$
J=J\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)
$$

and the related symmetric matrix

$$
A=\frac{1}{2}\left(J+J^{T}\right)=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{1}{2}\left(\frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial f_{2}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial f_{2}}{\partial x_{1}}+\frac{\partial f_{1}}{\partial x_{2}}\right) & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)
$$

From the givens, the entries of $A$ are positive everywhere, and the determinant of $A$ is also positive everywhere. So the eigenvalues of $A$ are positive (because their sum $\operatorname{tr}(A)$ and their product are both positive), and so $A$ is positive definite. That is, for any nonzero vector $\mathbf{v}$, we have $\mathbf{v}^{T} A \mathbf{v}=\mathbf{v} \cdot A \mathbf{v}>0$, so $\mathbf{v}^{T}\left(J+J^{T}\right) \mathbf{v}=\mathbf{v}^{T} J \mathbf{v}+\left(\mathbf{v}^{T} J \mathbf{v}\right)^{T}>0$.

But the scalar $\mathbf{v}^{T} J \mathbf{v}$ is its own transpose, showing that $\mathbf{v}^{T} J \mathbf{v}>0$ at all points in $\mathbb{R}^{2}$ and for all nonzero vectors $\mathbf{v}$.

We now show that if $P$ and $Q$ are distinct points in $\mathbb{R}^{2}$, then the dot product of the displacement vectors $\overrightarrow{P Q}$ and $\overrightarrow{f(P) f(Q)}$ is positive; it then follows that $f(P) \neq f(Q)$, showing that $f$ is one-to-one. In doing so, we will identify points in $\mathbb{R}^{2}$ with vectors. In particular, the displacement vector $\overrightarrow{f(P) f(Q)}$ can be written as

$$
\begin{aligned}
\overrightarrow{f(P) f(Q)} & =f(Q)-f(P)=\left.f(P+t \overrightarrow{P Q})\right|_{t=0} ^{1} \\
& =\int_{0}^{1} \frac{d}{d t}[f(P+t \overrightarrow{P Q})] d t \\
& =\int_{0}^{1} J(P+t \overrightarrow{P Q}) \overrightarrow{P Q} d t
\end{aligned}
$$

using the multivariable chain rule. Thus the dot product of this vector and $\overrightarrow{P Q}$ is

$$
\begin{aligned}
\overrightarrow{P Q} \cdot \overrightarrow{f(P) f(Q)} & =\overrightarrow{P Q} \cdot\left(\int_{0}^{1} J(P+t \overrightarrow{P Q}) \overrightarrow{P Q} d t\right) \\
& =\int_{0}^{1} \mathbf{v}^{T} J(P+t \mathbf{v}) \mathbf{v} d t
\end{aligned}
$$

where $\mathbf{v}=\overrightarrow{P Q}$. By our earlier observation, the integrand is positive for all $t$, and so the integral is also, completing the proof.

B6. Let $S$ be the set of sequences of length 2018 whose terms are in the set $\{1,2,3,4,5,6,10\}$ and sum to 3860 . Prove that the cardinality of $S$ is at most

$$
2^{3860} \cdot\left(\frac{2018}{2048}\right)^{2018}
$$

Solution. Note that the binary expansion of 2018 is

$$
2018=1024+512+256+128+64+32+2=2^{10}+2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{1}
$$

and consequently

$$
\frac{2018}{2048}=\frac{2018}{2^{11}}=2^{-1}+2^{-2}+2^{-3}+2^{-4}+2^{-5}+2^{-6}+2^{-10}
$$

We can interpret this as the probability that a random variable $X$ takes on a value in the set $A=\{1,2,3,4,5,6,10\}$, if the possible values of the variable are all the positive integers, and the probability of taking on the value $k$ is $2^{-k}$. (Note that $\sum_{k=1}^{\infty} 2^{-k}=1$, so this is a consistent assignment of probabilities.)

Now consider a sequence $\mathbf{X}=\left(X_{n}\right)_{n=1}^{2018}$ of independent random variables that each take positive integer values $k$ with probability $2^{-k}$. For any given sequence $\left(s_{n}\right) \in S$, the probability that $X_{n}=s_{n}$ for all $n$ (with $1 \leq n \leq 2018$ ) equals $2^{-s_{1}} 2^{-s_{2}} \cdots 2^{-s_{2018}}=2^{-\sum s_{n}}=2^{-3860}$. Therefore, the probability that the sequence $\left(X_{n}\right)$ will be in $S$ is

$$
\mathbb{P}(\mathbf{X} \in S)=|S| \cdot 2^{-3860}
$$

On the other hand, this probability is less than the probability that each $X_{n}$ takes on a value in $A$; as we have seen, for any $X_{n}$ individually that probability is 2018/2048, and so because the $X_{n}$ are independent, the probability that they will all take on values in $A$ is $(2018 / 2048)^{2018}$. So we have the inequality

$$
|S| \cdot 2^{-3860}=\mathbb{P}(\mathbf{X} \in S)<\left(\frac{2018}{2048}\right)^{2018}
$$

and the desired result follows.

