2019 William Lowell Putnam Mathematical Competition Problems

A1: Determine all possible values of the expression

$$
A^{3}+B^{3}+C^{3}-3 A B C
$$

where A, B, and C are nonnegative integers.

A2: In the triangle $\triangle A B C$, let G be the centroid, and let I be the center of the inscribed circle. Let α and β be the angles at the vertices A and B, respectively. Suppose that the segment $I G$ is parallel to $A B$ and that $\beta=2 \tan ^{-1}(1 / 3)$. Find α.

A3: Given real numbers $b_{0}, b_{1}, \ldots, b_{2019}$ with $b_{2019} \neq 0$, let $z_{1}, z_{2}, \ldots, z_{2019}$ be the roots in the complex plane of the polynomial

$$
P(z)=\sum_{k=0}^{2019} b_{k} z^{k}
$$

Let $\mu=\left(\left|z_{1}\right|+\cdots+\left|z_{2019}\right|\right) / 2019$ be the average of the distances from $z_{1}, z_{2}, \ldots, z_{2019}$ to the origin. Determine the largest constant M such that $\mu \geq M$ for all choices of $b_{0}, b_{1}, \ldots, b_{2019}$ that satisfy

$$
1 \leq b_{0}<b_{1}<b_{2}<\cdots<b_{2019} \leq 2019
$$

A4: Let f be a continuous real-valued function on \mathbb{R}^{3}. Suppose that for every sphere S of radius 1 , the integral of $f(x, y, z)$ over the surface of S equals 0 . Must $f(x, y, z)$ be identically 0 ?

A5: Let p be an odd prime number, and let \mathbb{F}_{p} denote the field of integers modulo p. Let $\mathbb{F}_{p}[x]$ be the ring of polynomials over \mathbb{F}_{p}, and let $q(x) \in \mathbb{F}_{p}[x]$ be given by

$$
q(x)=\sum_{k=1}^{p-1} a_{k} x^{k}
$$

where

$$
a_{k}=k^{(p-1) / 2} \quad \bmod p
$$

Find the greatest nonnegative integer n such that $(x-1)^{n}$ divides $q(x)$ in $\mathbb{F}_{p}[x]$.

A6: Let g be a real-valued function that is continuous on the closed interval $[0,1]$ and twice differentiable on the open interval $(0,1)$. Suppose that for some real number $r>1$,

$$
\lim _{x \rightarrow 0^{+}} \frac{g(x)}{x^{r}}=0
$$

Prove that either

$$
\lim _{x \rightarrow 0^{+}} g^{\prime}(x)=0 \quad \text { or } \quad \limsup _{x \rightarrow 0^{+}} x^{r}\left|g^{\prime \prime}(x)\right|=\infty
$$

B1: Denote by \mathbb{Z}^{2} the set of all points (x, y) in the plane with integer coordinates. For each integer $n \geq 0$, let P_{n} be the subset of \mathbb{Z}^{2} consisting of the point $(0,0)$ together with all points (x, y) such that $x^{2}+y^{2}=2^{k}$ for some integer $k \leq n$. Determine, as a function of n, the number of four-point subsets of P_{n} whose elements are the vertices of a square.

B2: For all $n \geq 1$, let

$$
a_{n}=\sum_{k=1}^{n-1} \frac{\sin \left(\frac{(2 k-1) \pi}{2 n}\right)}{\cos ^{2}\left(\frac{(k-1) \pi}{2 n}\right) \cos ^{2}\left(\frac{k \pi}{2 n}\right)} .
$$

Determine

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3}}
$$

B3: Let Q be an n-by- n real orthogonal matrix, and let $u \in \mathbb{R}^{n}$ be a unit column vector (that is, $u^{T} u=1$). Let $P=I-2 u u^{T}$, where I is the n-by- n identity matrix. Show that if 1 is not an eigenvalue of Q, then 1 is an eigenvalue of $P Q$.

B4: Let \mathcal{F} be the set of functions $f(x, y)$ that are twice continuously differentiable for $x \geq 1$, $y \geq 1$ and that satisfy the following two equations (where subscripts denote partial derivatives):

$$
\begin{gathered}
x f_{x}+y f_{y}=x y \ln (x y) \\
x^{2} f_{x x}+y^{2} f_{y y}=x y
\end{gathered}
$$

For each $f \in \mathcal{F}$, let

$$
m(f)=\min _{s \geq 1}(f(s+1, s+1)-f(s+1, s)-f(s, s+1)+f(s, s))
$$

Determine $m(f)$, and show that it is independent of the choice of f.

B5: Let F_{m} be the m th Fibonacci number, defined by $F_{1}=F_{2}=1$ and $F_{m}=F_{m-1}+F_{m-2}$ for all $m \geq 3$. Let $p(x)$ be the polynomial of degree 1008 such that $p(2 n+1)=F_{2 n+1}$ for $n=0,1,2, \ldots, 1008$. Find integers j and k such that $p(2019)=F_{j}-F_{k}$.

B6: Let \mathbb{Z}^{n} be the integer lattice in \mathbb{R}^{n}. Two points in \mathbb{Z}^{n} are called neighbors if they differ by exactly 1 in one coordinate and are equal in all other coordinates. For which integers $n \geq 1$ does there exist a set of points $S \subset \mathbb{Z}^{n}$ satisfying the following two conditions?
(1) If p is in S, then none of the neighbors of p is in S.
(2) If $p \in \mathbb{Z}^{n}$ is not in S, then exactly one of the neighbors of p is in S.

