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Problems

A1: Determine all possible values of the expression

A3 +B3 + C3 − 3ABC

where A,B, and C are nonnegative integers.

A2: In the triangle ∆ABC, let G be the centroid, and let I be the center of the inscribed circle.
Let α and β be the angles at the vertices A and B, respectively. Suppose that the segment
IG is parallel to AB and that β = 2 tan−1(1/3). Find α.

A3: Given real numbers b0, b1, . . . , b2019 with b2019 6= 0, let z1, z2, . . . , z2019 be the roots in the
complex plane of the polynomial

P (z) =

2019∑
k=0

bkz
k.

Let µ = (|z1| + · · · + |z2019|)/2019 be the average of the distances from z1, z2, . . . , z2019
to the origin. Determine the largest constant M such that µ ≥ M for all choices of
b0, b1, . . . , b2019 that satisfy

1 ≤ b0 < b1 < b2 < · · · < b2019 ≤ 2019 .

A4: Let f be a continuous real-valued function on R3. Suppose that for every sphere S of radius
1, the integral of f(x, y, z) over the surface of S equals 0. Must f(x, y, z) be identically 0?

A5: Let p be an odd prime number, and let Fp denote the field of integers modulo p. Let Fp[x]
be the ring of polynomials over Fp, and let q(x) ∈ Fp[x] be given by

q(x) =

p−1∑
k=1

akx
k,

where
ak = k(p−1)/2 mod p .

Find the greatest nonnegative integer n such that (x− 1)n divides q(x) in Fp[x].

A6: Let g be a real-valued function that is continuous on the closed interval [0, 1] and twice
differentiable on the open interval (0, 1). Suppose that for some real number r > 1,

lim
x→0+

g(x)

xr
= 0 .

Prove that either

lim
x→0+

g′(x) = 0 or lim sup
x→0+

xr|g′′(x)| =∞ .



B1: Denote by Z2 the set of all points (x, y) in the plane with integer coordinates. For each
integer n ≥ 0, let Pn be the subset of Z2 consisting of the point (0, 0) together with all
points (x, y) such that x2 + y2 = 2k for some integer k ≤ n. Determine, as a function of n,
the number of four-point subsets of Pn whose elements are the vertices of a square.

B2: For all n ≥ 1, let

an =
n−1∑
k=1

sin
( (2k−1)π

2n

)
cos2

( (k−1)π
2n

)
cos2

(
kπ
2n

) .
Determine

lim
n→∞

an
n3

.

B3: Let Q be an n-by-n real orthogonal matrix, and let u ∈ Rn be a unit column vector (that
is, uTu = 1). Let P = I − 2uuT , where I is the n-by-n identity matrix. Show that if 1 is
not an eigenvalue of Q , then 1 is an eigenvalue of PQ .

B4: Let F be the set of functions f(x, y) that are twice continuously differentiable for x ≥ 1,
y ≥ 1 and that satisfy the following two equations (where subscripts denote partial deriva-
tives):

xfx + yfy = xy ln(xy) ,

x2fxx + y2fyy = xy .

For each f ∈ F , let

m(f) = min
s≥1

(
f(s+ 1, s+ 1)− f(s+ 1, s)− f(s, s+ 1) + f(s, s)

)
.

Determine m(f), and show that it is independent of the choice of f .

B5: Let Fm be the mth Fibonacci number, defined by F1 = F2 = 1 and Fm = Fm−1 + Fm−2
for all m ≥ 3. Let p(x) be the polynomial of degree 1008 such that p(2n+ 1) = F2n+1 for
n = 0, 1, 2, . . . , 1008. Find integers j and k such that p(2019) = Fj − Fk.

B6: Let Zn be the integer lattice in Rn. Two points in Zn are called neighbors if they differ
by exactly 1 in one coordinate and are equal in all other coordinates. For which integers
n ≥ 1 does there exist a set of points S ⊂ Zn satisfying the following two conditions?

(1) If p is in S, then none of the neighbors of p is in S.

(2) If p ∈ Zn is not in S, then exactly one of the neighbors of p is in S.


