
A1. How many positive integers N satisfy all of the following three conditions?

(i) N is divisible by 2020.
(ii) N has at most 2020 decimal digits.

(iii) The decimal digits of N are a string of consecutive ones followed by a string of
consecutive zeros.

Answer. 504 · 1009 = 508536.

Solution 1. A positive integer N satisfying (iii), with j ones followed by k zeros, has the
form

N =
10j − 1

9
· 10k

where j ≥ 1, k ≥ 0, and j+ k ≤ 2020. Note that 2020 = 20 · 101, so to satisfy (i) the integer

N must be divisible by 101 and end in at least two zeros (so k ≥ 2). If 101 divides N then 101

divides M = 10j− 1. A quick check shows that M ≡ 0, 9, 99, 90 mod 101 when j ≡ 0, 1, 2, 3
mod 4. Consequently, 4 must divide j. (One can see directly that the conditions k ≥ 2, 4|j
are necessary and sufficient by noting that 101 divides 1111 but not 1, 11 or 111.)

If j = 4m, then for N to satisfy (ii) also, we need 2 ≤ k ≤ 2020 − 4m, for a total of

2019− 4m possible values of k. The total number of integers N satisfying all the conditions
is therefore

504∑
m=1

(2019− 4m) = 2019 · 504− 4 · 504 · 505

2
= 504 · (2019− 1010) = 504 · 1009 = 508536.

Solution 2. As in the first solution, it is straightforward to show that the acceptable
numbers N are those for which there are at most 2020 decimal digits, consisting of j ones
with 4|j followed by k zeros with k ≥ 2. By introducing additional “phantom” digits z
at the beginning of the number, we can convert it to a string of length exactly 2020 of
the form zzz · · · z111 · · · 1000 · · · 0. We now show that the set of such strings is in bijective

correspondence with a set of size
(
1009
2

)
= 508536. To see this, remove the final two zeros

from the string, and group the remaining 2018 positions in the string into consecutive pairs.
Then any choice of 2 of these 1009 pairs corresponds to a unique string of the desired form,
as follows. If the two chosen pairs have an even number of pairs between them, put a z in
each position before the first chosen pair, put 11 for each of the chosen pairs and all pairs in
between, and put a 0 in each position after the second chosen pair, for example:

xx︸︷︷︸ xx︸︷︷︸
Choose

xx︸︷︷︸ xx︸︷︷︸ xx︸︷︷︸
Choose

xx︸︷︷︸ · · · 7→ zz | 11 | 11 | 11 | 11 | 00 · · · .

If the two chosen pairs are separated by an odd number of pairs, do the same except for
replacing the chosen pairs by z1 and 10, respectively, for example:

xx︸︷︷︸ xx︸︷︷︸
Choose

xx︸︷︷︸ xx︸︷︷︸
Choose

xx︸︷︷︸ · · · 7→ zz | z1 | 11 | 10 | 00 · · · .

Note that in either case, the resulting number of ones is divisible by 4. Erasing the digits
z and restoring the two zeros that were removed at the end of the string, we get every
acceptable number N exactly once from some choice of 2 of the 1009 consecutive pairs.



Solution 3. As in the first solution, the positive integers N satisfying conditions (i) and
(iii) have j ones followed by k zeros, with 4|j, j ≥ 1, and k ≥ 2. Thus if we let bm be the
number of m-digit positive integers with these properties, we have the generating function

∞∑
m=0

bmx
m =

x4

1− x4
· x2

1− x
.

Hence the generating function for the number Bm =
∑
k≤m

bk of such integers with at most

m digits is

∞∑
m=0

Bmx
m =

1

1− x
·
∞∑

m=0

bmx
m =

x6

(1− x)2(1− x4)
=
x6(1 + x+ x2 + x3)2

(1− x4)3
.

Because

1

(1− y)3
=
∞∑
k=0

(
k + 2

2

)
yk

and x6(1 + x + x2 + x3)2 = x6 + 2x7 + 3x8 + 4x9 + 3x10 + 2x11 + x12, we can read off the
answer

B2020 =

(
504

2

)
+ 3

(
505

2

)
= 126756 + 381780 = 508536.

A2. Let k be a nonnegative integer. Evaluate

k∑
j=0

2k−j
(
k + j

j

)
.

Answer. 22k = 4k .

Solution 1. Consider lattice paths of length 2k + 1 that begin from the origin, and where
each step is either of the form (x, y) 7→ (x+ 1, y) or (x, y) 7→ (x, y+ 1); thus these paths will
be in the first quadrant. There are 22k+1 such paths, and by reflective symmetry, exactly
half of them reach the line x = k + 1 (the other half reach the line y = k + 1). So there are
22k such paths that have at least k + 1 “right steps” among their 2k + 1 steps.

On the other hand, any of those paths first touches the line x = k + 1 at some point
(k + 1, j), which means that the previous step came from (k, j). There are exactly

(
k+j
j

)
paths from (0, 0) to (k, j), and 2k−j possible paths after (k+1, j). Summing over the possible
values for j, which range from 0 to k, gives the sum from the problem statement, and thus
that sum equals 22k.



Solution 2. Let S(k) denote the sum from the problem statement. Then using basic
properties of binomial coefficients, one finds that for k ≥ 0,

S(k + 1) =
k+1∑
j=0

2k+1−j
(
k + 1 + j

j

)

=
k+1∑
j=0

2k+1−j
((

k + j

j

)
+

(
k + j

j − 1

))

= 2
k+1∑
j=0

2k−j
(
k + j

j

)
+

k∑
j=0

2k−j
(
k + j + 1

j

)
= 2S(k) +

(
2k + 1

k + 1

)
+

1

2

(
S(k + 1)−

(
2k + 2

k + 1

))
= 2S(k) +

1

2
S(k + 1) +

(
2k + 1

k + 1

)
− 1

2

(
2k + 2

k + 1

)
= 2S(k) +

1

2
S(k + 1).

Therefore S(k + 1) = 4S(k), and since S(0) = 1, by induction we have S(k) = 4k for all k.

Solution 3. Note that the desired sum

k∑
j=0

2k−j
(
k + j

j

)
= 2k

k∑
j=0

2−j
(
k + j

k

)
is the coefficient of xk in the polynomial

Pk(x) = 2k

k∑
j=0

2−j(1 + x)k+j

= 2k(1 + x)k
k∑

j=0

(
1 + x

2

)j

= 2k(1 + x)k
1−

(
1+x
2

)k+1

1− 1+x
2

= 2k+1(1 + x)k
1−

(
1+x
2

)k+1

1− x

=
[
2k+1(1 + x)k − (1 + x)2k+1

] 1

1− x
=
[
2k+1(1 + x)k − (1 + x)2k+1

]
(1 + x+ x2 + . . .) .

But this coefficient can also be expressed as

2k+1

k∑
j=0

(
k

j

)
−

k∑
j=0

(
2k + 1

j

)
= 2k+1 · 2k − 1

2
· 22k+1 = 22k = 4k ,

as claimed.



A3. Let a0 = π/2, and for n ≥ 1, let an = sin(an−1). Determine whether
∞∑
n=1

a2n

converges.

Answer. The series diverges.

Solution 1. Note that a1 = 1; we now show by induction on n that for all n ≥ 1, an ≥ 1/
√
n.

Note that on the interval (0, π/2), sin(x) is increasing and sinx > x − x3/6 by Taylor’s
theorem with remainder (because the fifth derivative, cosx, is positive on the interval). In
particular, from the induction hypothesis,

an+1 = sin an ≥ sin

(
1√
n

)
>

1√
n
− 1

6

(
1√
n

)3

.

On the other hand,

1√
n
− 1√

n+ 1
=

√
n+ 1−

√
n

√
n
√
n+ 1

=
1

(
√
n+ 1 +

√
n)
√
n
√
n+ 1

>
1

(3
√
n)
√
n(2
√
n)

=
1

6

(
1√
n

)3

,

so

an+1 >
1√
n+ 1

,

completing the induction. But then
∞∑
n=1

a2n diverges because it is greater than the harmonic

series
∞∑
n=1

1

n
.

Solution 2. Because we have 0 < sinx < x for x ∈ (0, π/2], the sequence (an) is monoton-
ically decreasing to a limit L ∈ [0, 1]. By the continuity of the sine function we must have
L = sin(L), so L = 0. Now it follows from L’Hôpital’s rule that

lim
n→∞

(
1

a2n+1

− 1

a2n

)
= lim

n→∞

a2n − sin2(an)

a2n sin2(an)
= lim

x→0

x2 − sin2 x

x2 sin2 x

= lim
x→0

x− sinx

x3
· x+ sinx

x
·
( x

sinx

)2
=

1

6
· 2 · 12 =

1

3
.

We can then apply the Stolz-Cesàro theorem to get

lim
n→∞

1/a2n
n

= lim
n→∞

1/a2n+1 − 1/a2n
(n+ 1)− n

=
1

3
.

Hence a2n ∼ 3/n as n→∞ and the given series diverges.

A4. Consider a horizontal strip of N + 2 squares in which the first and the last square
are black and the remaining N squares are all white. Choose a white square uniformly at
random, choose one of its two neighbors with equal probability, and color this neighboring
square black if it is not already black. Repeat this process until all the remaining white



squares have only black neighbors. Let w(N) be the expected number of white squares
remaining.

Find

lim
N→∞

w(N)

N
.

Answer.
1

e
.

Solution. Note that w(0) = 0, w(1) = 1, and w(2) = 1 (as eventually one of the two white
squares will turn black). Let N ≥ 3, and number the original white squares from 1 to N .
For the first step of the process, there are 2N equally likely possible “outcomes”, consisting
of a choice of a white square along with a choice of one of its neighbors to be colored. Two of
these outcomes (when white square 1 or N is chosen along with its neighbor that is already
black) result in no change and can therefore be disregarded. The other 2N − 2 outcomes all
result in a white square being colored black. If that is the white square numbered k, then
the configuration that results is equivalent to a pair of strips like the original one, but with
N replaced by k − 1 for one of the strips and by N − k for the other, so that the expected
number of white squares at the end of the process, given a particular value of k, will be
w(k − 1) + w(N − k). Of the 2N − 2 outcomes that lead to a white square being colored
black, one has k = 1, one has k = N , and the other values of k, with 2 ≤ k ≤ N − 1, occur
twice each. (The white squares at the ends are neighbors of a white square in just one way,
the other white squares are adjacent to white squares on either side.) Because these 2N − 2
outcomes are equally likely, we can conclude that

w(N) =
1

2N − 2

(
w(0) + w(N − 1) + 2(w(1) + w(N − 2))+

· · ·+ 2(w(N − 2) + w(1)) + w(N − 1) + w(0)
)

=
1

N − 1

(
w(0) + w(N − 1) + 2

N−2∑
n=1

w(n)
)
.

Thus (N − 1)w(N) = w(N − 1) + 2
N−2∑
n=1

w(n). Subtracting this equation from the same one

in which N is replaced by N + 1, we get Nw(N + 1) − (N − 1)w(N) = w(N) + w(N − 1),
that is,

w(N + 1) = w(N) +
1

N
w(N − 1). (∗)

The solutions of this second-order linear homogeneous recurrence relation are known to
be linear combinations of any two independent solutions. By inspection, one solution is
w(N) = N + 1 ; we will use reduction of order to find the general solution.

Substituting w(N) = (N+1)q(N) into (∗) yields (N+2)q(N+1) = (N+1)q(N)+q(N−1),

which can be rewritten as (N + 2)[q(N + 1) − q(N)] = −[q(N) − q(N − 1)]. Thus if we let

∆(N) = q(N)− q(N − 1), we have

∆(N + 1) = − 1

N + 2
∆(N) ,

which implies that

∆(N) = C
(−1)N

(N + 1)!



for some constant C. Therefore,

q(N) = q(0) +
N∑

n=1

∆(n) = q(0) + C

[
N∑

n=1

(−1)n

(n+ 1)!

]
,

from which we see that the general solution to (∗) is given by

w(N) = a · (N + 1) + C · (N + 1)

[
N∑

n=1

(−1)n

(n+ 1)!

]
.

From the initial conditions we have w(0) = 0, so a = 0, and then w(1) = 1, so C = −1
and

w(N) = (N + 1)

[
N+1∑
j=2

(−1)j

j!

]
= (N + 1)

[
N+1∑
j=0

(−1)j

j!

]
.

Finally,

lim
N→∞

w(N)

N
= lim

N→∞

[
N+1∑
j=0

(−1)j

j!

]
=

1

e
.

A5. Let an be the number of sets S of positive integers for which∑
k∈S

Fk = n ,

where the Fibonacci sequence (Fk)k≥1 satisfies Fk+2 = Fk+1 + Fk

and begins F1 = 1, F2 = 1, F3 = 2, F4 = 3.

Find the largest integer n such that an = 2020.

Answer. n = F4040 − 1.

Solution 1. We will show that for any integer m ≥ 2, the largest n such that an = m is

n = F2m − 1; therefore, the answer is F4040 − 1.

Note that for every positive integer n, the inequalities F2m−2 ≤ n ≤ F2m − 1 are satisfied
for a unique m ≥ 2. Thus it is enough to show the two following facts, each of which will be
proved by induction on m:

a) For n = F2m − 1, we have an = m.
b) Whenever F2m−2 ≤ n ≤ F2m − 1, we have an ≥ m.

Proof of a): For the base case m = 2, we have n = F4−1 = 2 and the sets S with
∑
k∈S

Fk = n

are {1, 2} and {3}. Now let n = F2m+2 − 1. To get a decomposition n =
∑
k∈S

Fk of the

desired form, we can add F2m+1 to any such decomposition of F2m − 1; by the induction
hypothesis, there are exactly m such. If a decomposition of n does not include F2m+1 , it
must include all earlier Fk , because n = F2m + F2m−1 + · · · + F1 ; this identity yields one
additional decomposition, for a total of m+ 1, completing the induction.

Proof of b): We’ll use m = 2 and m = 3 as base cases, checking that a1 = 2 (the sets are {1}
and {2}) and a2 = 2 for m = 2, and that a3 = 3, a4 = 3, a5 = 3, a6 = 4, a7 = 3 for m = 3.
Now suppose that F2m ≤ n ≤ F2m+2 − 1 and m ≥ 3. Then we can write n = Fq + `, where
q = 2m or q = 2m+ 1 and 0 ≤ ` ≤ Fq−1 − 1. We distinguish three cases.



(1) If 0 ≤ ` < Fq−3 , we can get a decomposition of n by adding Fq to any decomposition
of ` (of which there are at least 2, unless ` = 0, in which case we only have n = Fq)
as well as by adding Fq−1 to any decomposition of Fq−2 + ` (which is a number less
than Fq−1 , so it cannot create repetition). By the induction hypothesis, there are at
least m of the latter, so there are at least m + 1 different decompositions of n, as
desired.

(2) If Fq−3 ≤ ` < Fq−3 + Fq−4 = Fq−2 , then we can get a decomposition of n by adding
Fq to any decomposition of `, and we can also get one by adding Fq−1 + Fq−2 to any
decomposition of `. Because F2m−4 ≤ ` ≤ F2m− 1, by induction hypothesis there are
at least m− 1 decompositions of `, so there are at least 2(m− 1) decompositions of
n. Because m ≥ 3, we have 2(m− 1) ≥ m+ 1, as desired.

(3) The final case occurs when Fq−2 ≤ ` ≤ Fq−1− 1. In this case, we can get a decompo-
sition of n by adding Fq to any decomposition of `; by the induction hypothesis, there
are at least m such decompositions. We can also find at least one other decomposi-
tion by starting with Fq−1 + Fq−2 and continuing to add the largest possible distinct
Fibonacci number to keep the sum ≤ n, that is, by using the “greedy” algorithm.
(This works because Fq + ` ≤ Fq +Fq−1− 1 = Fq+1− 1 = Fq−1 +Fq−2 + · · ·+F1, and
if any Fibonacci number is not used, the sum of the remaining ones is greater than
or equal to the one skipped, so the algorithm can continue until the sum reaches n.)
So once more there are at least m+ 1 different decompositions of n, and the proof is
complete.

Solution 2. We start by showing that every positive integer n can be written uniquely as a

sum n =
∑
k∈S

Fk for which the set S contains no two consecutive integers and contains only

integers that are at least 2. (This way of writing n will be referred to as the base-Fibonacci

representation of n; the first few are 1 = F2 , 2 = F3 , 3 = F4 , 4 = F2 + F4 .) To show

that such a representation of n is possible, choose the largest m for which Fm ≤ n, and

note that then n < Fm+1 , so n − Fm < Fm−1. By induction, n − Fm has a base-Fibonacci

representation, for which the set of subscripts cannot include m− 1, and adding Fm gives a

base-Fibonacci representation for n. To show uniqueness of the representation, note that if

we have such a representation n =
∑
k∈S

Fk and j is the largest element in S, then

n ≤ Fj + Fj−2 + Fj−4 + · · ·
= (Fj+1 − Fj−1) + (Fj−1 − Fj−3) + · · ·
= Fj+1 − 1 ,

so j must be the largest integer with Fj ≤ n ; then n − Fj =
∑

k∈S−{j}
Fk is a base-Fibonacci

representation, which is unique by induction.

Next, we identify any nonempty finite set S of positive integers with the finite sequence

(sk)k≥1 of zeros and ones, ending with a 1, such that sk = 1⇔ k ∈ S. In particular, we can
then define

f(S) =
∑

skFk =
∑
k∈S

Fk ,

and we are looking for the largest n such that there are exactly 2020 sets S with f(S) = n.
We will show, more generally, that the largest n for which there are exactly m ≥ 2 sets with
f(S) = n is n = F2m − 1, so that the answer is F4040 − 1.



To begin, note that for any positive integer n, one set S0 with f(S0) = n is given by the
base-Fibonacci representation of n, and any other set S with f(S) = n can be transformed
into S0 as follows. Replace any occurrence of consecutive terms (1, 1, 0) in the sequence by
(0, 0, 1); if there is no occurrence of (1, 1, 0) but the sequence starts with (1, 0), replace that
start by (0, 1). Repeat these “moves” until no further move is possible, at which point we
must have arrived at S0 , because there are no longer consecutive 1’s in the sequence and
the sequence starts with 0. Therefore, we can count the number of sets with f(S) = n by
counting the number of sets that can be transformed into S0 by a sequence of such moves, or
equivalently the number of sets that can be obtained from S0 (including S0 itself) by reversing
these moves. These reverse moves send (0, 0, 1) anywhere in the sequence to (1, 1, 0) (we’ll
refer to this as an A move) or (0, 1) at the beginning of the sequence to (1, 0) (a B move).

Suppose that n = F2m − 1. Then the base-Fibonacci representation of n is

n = F3 + F5 + · · ·+ F2m−3 + F2m−1 ,

corresponding to the sequence 0, 0, 1, 0, 1, 0, 1, . . . , 0, 1, and when we start reversing the moves
we see that at every step there is only one choice, which is an A move; after k steps we will
have

n = F1 + F2 + · · ·+ F2k + F2k+3 + F2k+5 + · · ·+ F2m−3 + F2m−1

and we get such representations for k = 0, 1, . . . ,m − 1, so there are exactly m sets S with
f(S) = n.

To finish the proof, we now show by induction that if n ≥ F2m , there are more than m
sets S with f(S) = n. Note that because n ≥ F2m , the base-Fibonacci representation of n
corresponds to a sequence which has a 1 in, or to the right of, the 2mth position. Thus it is
enough to prove that for any base-Fibonacci sequence S0 with its final 1 in either the 2mth
position or the (2m + 1)st position, there are at least m + 1 different outcomes (counting
S0 itself) of the A and B moves described above. We will do so by induction, using the
rightmost string of at least two successive zeros that occurs in S0 before the final 1. If there
is no such string of zeros, then S0 must be precisely of the form 0, 1, 0, 1, 0, 1, . . . , 0, 1 with
its final 1 in the 2mth position; in this case we can start with a B move and then make up to
m− 1 A moves, so there are in fact exactly m+ 1 different outcomes. If the rightmost string
of at least two successive zeros actually comes at the very beginning of the sequence, say that
the sequence starts with exactly z zeros (z ≥ 2), so it consists of those z zeros followed by
1, 0, 1, 0, . . . , 1, 0, 1, say (r+1) ones and r zeros. Then we can start with bz/2c A moves at the
beginning of the sequence; if z is odd, we can follow those up with a B move, so, whether z is
even or odd, we have a total of b(z+ 1)/2c moves available at the beginning of the sequence.
After that we have an additional r A moves, as each 1 that has not been moved yet can be
“pushed to the left” (using an A move) in its turn. In all, we have at least b(z+1)/2c+r+1
different outcomes (counting S0 itself); meanwhile, the length of the sequence S0 is z+2r+1.
Whether this equals 2m or 2m+ 1, we have b(z + 1)/2c+ r + 1 = m+ 1, so we are done in
this case. We are left with the case that the rightmost string of at least two zeros in S0 does
not come at the beginning of the sequence; say it comes after a 1 in the ath position and
consists of exactly z zeros, followed by (r+1) ones and r zeros, alternating as in the previous
case. By the induction hypothesis, there are at least ba/2c+ 1 different outcomes available
(including the starting “state”) for just the first a positions of the sequence. For each of
these “partial” outcomes, the rest of the sequence, starting with the z consecutive zeros, can
be treated as in the previous case, except that if z is odd, we do not have the follow-up B
move available after the initial bz/2c A moves. Thus we have at least bz/2c+ r+ 1 different



possible outcomes for the part of the sequence after the first a positions, so overall we have
at least

(ba/2c+ 1)(bz/2c+ r + 1) ≥ ba/2c+ bz/2c+ r + 1 + ba/2cbz/2c
≥ ba/2c+ bz/2c+ r + 2

outcomes, because a ≥ 2 and z ≥ 2. The length of the sequence is a + z + 2r + 1. If this
equals 2m, then one of a and z is even (and the other is odd), so

ba/2c+ bz/2c+ r + 2 = a/2 + z/2− 1/2 + r + 2 = (a+ z + 2r + 3)/2 = m+ 1 ;

if the length equals 2m+ 1, then a and z have the same parity and

ba/2c+ bz/2c+ r + 2 ≥ a/2 + z/2− 1 + r + 2 = (a+ z + 2r + 2)/2 = m+ 1 .

This estimate concludes the proof.

A6. For a positive integer N , define the function

fN(x) =
N∑

n=0

N + 1/2− n
(N + 1)(2n+ 1)

sin
(
(2n+ 1)x

)
.

Determine the smallest constant M such that fN(x) ≤M for all N and all real x .

Answer. M =
π

4
.

Solution. Note that fN(x) is an odd function with period 2π. The following computation
allows us to write its derivative in closed form:

f ′N(x) =
N∑

n=0

2N + 1− 2n

2(N + 1)
cos((2n+ 1)x) =

N∑
n=0

2N + 1− 2n

2(N + 1)
Re
(
e(2n+1)ix

)
=

1

2(N + 1)
Re

(
e2(N+1)ix

N∑
n=0

(2N + 1− 2n)e(2n−1−2N)ix

)

=
1

2(N + 1)
Re

(
ie2(N+1)ix d

dx

N∑
n=0

e(2n−1−2N)ix

)

=
1

2(N + 1)
Re

(
ie2(N+1)ix d

dx

(
e(−1−2N)ix 1− e2(N+1)ix

1− e2ix

))
=

1

2(N + 1)
Re

(
ie2(N+1)ix d

dx

1− e−2(N+1)ix

eix − e−ix

)
=

1

4(N + 1)
Re

(
e2(N+1)ix d

dx

1− e−2(N+1)ix

sinx

)
=

1

4(N + 1)
Re

(
2(N + 1)i

sinx
+

(1− e2(N+1)ix) cosx

sin2 x

)
=

[1− cos(2(N + 1)x)] cosx

4(N + 1) sin2 x
=

sin2((N + 1)x)

2(N + 1) sin2 x
cosx .

In particular, the derivative has the same sign as cos x. (This is still true where sin x = 0,

because then x = kπ for some integer k, and for all 0 ≤ n ≤ N, cos((2n + 1)kπ) = cos kπ,

so that the first expression for f ′N(x) above is a positive multiple of cosx. Alternatively,



one can use continuity of the derivative and l’Hôpital’s rule.) It follows that fN(x) has its
maximum value for x = π/2. That value is

fN

(π
2

)
=

N∑
n=0

2N + 1− 2n

(2N + 2)(2n+ 1)
· (−1)n

=
N∑

n=0

(
1

2n+ 1
− 1

2N + 2

)
· (−1)n

=



(
2M∑
n=0

(−1)n

2n+ 1

)
− 1

4M + 2
when N = 2M is even and

(
2M∑
n=0

(−1)n

2n+ 1

)
− 1

4M + 3
when N = 2M + 1 is odd.

From here it is straightforward to check that f2M(π/2) − f2M−1(π/2) = 1
(4M+1)(4M+2)

and

f2M+1(π/2) − f2M(π/2) = 1
(4M+2)(4M+3)

, so the maximum value fN(π/2) is an increasing

function of N . Thus the least upper bound on fN(x) that is valid for all N and x is

lim
N→∞

fN

(π
2

)
=
∞∑
n=0

(−1)n

2n+ 1
= arctan(1) =

π

4
.

Variant. An alternate computation of the derivative f ′N(x) uses the trigonometric sums
given by the
Lemma:

N∑
n=0

cos[(2n+ 1)x] =
sin[(N + 1)x] cos[(N + 1)x]

sinx
,

N∑
n=0

sin[(2n+ 1)x] =
sin2[(N + 1)x]

sinx
.

Proof: Let z = eix, and note that

N∑
n=0

ei(2n+1)x =
N∑

n=0

z2n+1 =
z − z2N+3

1− z2

=
z2N+2 − 1

z − 1/z
= zN+1

(
zN+1 − z−(N+1)

z − 1/z

)
= (cos[(N + 1)x] + i sin[(N + 1)x])

sin[(N + 1)x]

sinx
.

Taking real and imaginary parts, we get the desired sums, proving the lemma.

We now use the identity

N + 1/2− n
(N + 1)(2n+ 1)

=
1

2n+ 1
− 1

2(N + 1)



to split fN(x) into two pieces:

fN(x) =
N∑

n=0

sin[(2n+ 1)x]

2n+ 1
− 1

2(N + 1)

N∑
n=0

sin[(2n+ 1)x]

=
N∑

n=0

sin[(2n+ 1)x]

2n+ 1
− 1

2(N + 1)

sin2[(N + 1)x]

sinx
,

using the second part of the lemma. The derivative is therefore

f ′N(x) =
N∑

n=0

cos[(2n+ 1)x]− 1

2(N + 1)

(
2(N + 1) sin[(N + 1)x] cos[(N + 1)x]

sinx
− sin2[(N + 1)x]

sin2 x
· cosx

)
=

sin2((N + 1)x)

2(N + 1) sin2 x
cosx ,

because the first two summands on the right cancel by the first part of the lemma.



B1. For a positive integer n, define d(n) as the sum of the digits of n when written in binary
(for example, d(13) = 1 + 1 + 0 + 1 = 3). Let

S =
2020∑
k=1

(−1)d(k)k3.

Determine S modulo 2020.

Answer. 1990.

Solution 1. We will show that if we let d(0) = 0, start the sum at k = 0 (which does
not change its value), and group the terms from that start in groups of sixteen each, then
each complete group contributes 0 to the sum. Therefore, S is equal to the sum starting at
2016 = 16 · 126, that is,

S =
2020∑

k=2016

(−1)d(k)k3.

From the binary expansion 11, 111, 100, 000 of 2016, we observe that
d(2016) = 6, d(2017) = 7, d(2018) = 7, d(2019) = 8, d(2020) = 7 and so

S = (2016)3 − (2017)3 − (2018)3 + (2019)3 − (2020)3

≡ (−4)3 − (−3)3 − (−2)3 + (−1)3 = −64 + 27 + 8− 1 = −30 ≡ 1990 (mod 2020).

It remains to prove the desired cancellation, which results from the polynomial P (x) = x3

having degree 3 and from 23+1 = 16. In fact, we can apply the following lemma.
Lemma: Suppose P (x) is a polynomial of degree n ≥ 0 , let N = 2n+1 − 1, and let m ≥ 0
be any integer. Then

Qm =
N∑
j=0

(−1)d(m2n+1+j) P (m2n+1 + j) = 0.

Proof: Note that for 0 ≤ j ≤ N , there are no carries in binary in the addition m2n+1 + j,

so d (m2n+1 + j) = d (m2n+1) + d(j) and we have Qm = (−1)d(m2n+1)qm(0), where

qm(x) =
N∑
j=0

(−1)d(j)pm(x+ j) , pm(x) = P (m2n+1 + x).

Now pm(x), a translate of P (x), is again a polynomial of degree n, and so it is enough

to show that if p(x) is any polynomial of degree n and q(x) =
N∑
j=0

(−1)d(j)p(x + j), then

q(0) = 0. In fact, we will see that q(x) is identically zero. Define the difference operator ∆k

on polynomials by ∆kR(x) = R(x+ k)−R(x). We then have

q(x) =
2n−1∑
j=0

(−1)d(j)p(x+ j) +
N∑

j=2n

(−1)d(j)p(x+ j)

=
2n−1∑
j=0

[
(−1)d(j)p(x+ j) + (−1)d(j+2n)p(x+ j + 2n)

]
= −∆2n

2n−1∑
j=0

(−1)d(j)p(x+ j)



because d(j + 2n) = d(j) + 1 for 0 ≤ j ≤ 2n − 1. By continuing to halve the interval for j in
this way we end up with

q(x) = (−1)n+1∆2n · · ·∆4∆2∆1p(x).

However, each application of a difference operator ∆k lowers the degree of a nonconstant
polynomial by 1, so ∆2n−1 · · ·∆4∆2∆1p(x) is constant and q(x) is identically zero, completing
the proof of the lemma.

Solution 2. Let Sn,q =
n∑
k=0

(−1)d(k)kq mod 2020, so we are looking for S2020,3. Note that

d(2k) = d(k) and d(2k + 1) = d(k) + 1, so splitting the sum into even and odd terms we get

S2020,3 ≡
1009∑
k=0

(−1)d(2k)(2k)3 +
1009∑
k=0

(−1)d(2k+1)(2k + 1)3

=
1009∑
k=0

(−1)d(k)
(
8k3 − 8k3 − 12k2 − 6k − 1

)
≡ −12S1009,2 − 6S1009,1 − S1009,0 ,

where the congruences are modulo 2020. Similarly, we have

S1009,2 ≡
504∑
k=0

(−1)d(2k)(2k)2 +
504∑
k=0

(−1)d(2k+1)(2k + 1)2

=
504∑
k=0

(−1)d(k)
(
4k2 − 4k2 − 4k − 1

)
≡ −4S504,1 − S504,0

and

S1009,1 ≡
504∑
k=0

(−1)d(2k)(2k) +
504∑
k=0

(−1)d(2k+1)(2k + 1)

=
504∑
k=0

(−1)d(k)(−1)

≡ −S504,0 .

Combining the results so far, we have

S2020,3 ≡ −12(−4S504,1 − S504,0) + 6S504,0 − S1009,0

≡ 48S504,1 + 18S504,0 − S1009,0 .



Note that

S504,1 ≡
252∑
k=0

(−1)d(2k)(2k) +
251∑
k=0

(−1)d(2k+1)(2k + 1)

= (−1)d(504)(504) +
251∑
k=0

(−1)d(k)(−1)

≡ (−1)d(504)(504)− S251,0

= 504− S251,0 ,

because the binary expansion of 504 is 111111000, so that d(504) = 6 is even. Finally,
Sn,0 = 0 whenever n is odd (using the same splitting into even and odd terms), so S503,0 = 0
and S504,0 = (−1)d(504) = 1. It follows that

S2020,3 ≡ 48(504− 0) + 18 · 1− 0

= 24210 ≡ 1990.

B2. Let k and n be integers with 1 ≤ k < n. Alice and Bob play a game with k pegs in a
line of n holes. At the beginning of the game, the pegs occupy the k leftmost holes. A legal
move consists of moving a single peg to any vacant hole that is further to the right. The
players alternate moves, with Alice playing first. The game ends when the pegs are in the
k rightmost holes, so whoever is next to play cannot move, and therefore loses. For what
values of n and k does Alice have a winning strategy?

Answer. Alice has a winning strategy if and only if at least one of k and n is odd.

Solution. Number the holes, from left to right, 1, 2, . . . , n. We first show that when k and n
are both even, Bob has a winning strategy. In this case we can divide the holes into disjoint
adjacent pairs Pi = {2i − 1, 2i} with 1 ≤ i ≤ n/2. At the beginning of the game the pegs
completely occupy the holes in the leftmost k/2 pairs, and all the holes in the remaining
pairs are vacant. Thus Alice’s first move must take a peg from an occupied pair of holes and
place it in one of a vacant pair of holes. A winning strategy for Bob is to always take the
other peg of the pair that Alice moved from and place it in the remaining hole of the pair
that Alice moved to. Thus after each of Bob’s moves, each of the pairs Pi either has pegs in
both holes or in neither, whereas after each of Alice’s moves, there are two of the pairs Pi
with one peg each. In particular, Alice can never reach the ending position, and the game
will end after one of Bob’s moves.

If k and n are not both even, Alice always has a first move available which will leave
Bob either with no moves at all, or with a position equivalent to the starting position of
our game with even integers k1 and n1, 1 ≤ k1 < n1. Thus by the case discussed in the
previous paragraph, Alice (as the second player from that position) has a winning strategy.
Specifically, if k and n are both odd, Alice can move the peg in hole k to hole n, leaving
k1 = k− 1 pegs at the beginning of a line of n1 = n− 1 remaining holes. (If k = 1, the game
is then over.) If k is odd and n is even, Alice can move the peg in hole 1 to hole n, winning
the game immediately if k = 1 and otherwise leaving k1 = k − 1 pegs at the beginning of a
line of n1 = n− 2 remaining holes. Finally, if k is even and n is odd, Alice can move the peg
in hole 1 to hole k + 1, winning the game immediately if n = k + 1 and otherwise leaving
k1 = k pegs at the beginning of a line of n1 = n− 1 remaining holes. In each of these three



cases, after making the indicated first move, Alice can use Bob’s strategy from the previous
paragraph to win.

Comment. The game with k pegs and n holes is equivalent to the game with n − k pegs
and n holes (moving the k pegs to the right is equivalent to moving the n− k vacant spaces
to the left). This symmetry can be used to reduce the three cases considered in the second
paragraph to just two.

B3.
Let x0 = 1, and let δ be some constant satisfying 0 < δ < 1. Iteratively, for

n = 0, 1, 2, . . ., a point xn+1 is chosen uniformly from the interval [0, xn]. Let Z be the

smallest value of n for which xn < δ. Find the expected value of Z, as a function of δ.

Answer. The expected value is 1 + ln(1/δ).

Solution 1. Let ρn(x) be the probability density for the location of xn . Note that 0 ≤ xn ≤ 1
for all n, so these density functions all have support [0, 1]. They can be found recursively
from ρ1(x) = 1 and

ρn+1(x) =

∫ 1

y=x

ρn(y)
dy

y
.

This yields

ρ2(x) =

∫ 1

y=x

dy

y
= − ln(x), ρ3(x) =

∫ 1

y=x

(− ln y)
dy

y
=

[− ln(x)]2

2
,

which suggests that in general

ρn(x) =
[− ln(x)]n−1

(n− 1)!
;

this is straightforward to check by induction.
Let qn be the probability that xn < δ but xn−1 ≥ δ, that is, the probability that Z = n.

Then q1 = δ, and for n ≥ 2 we have

qn =

∫ δ

0

ρn(x)− ρn−1(x) dx

=

∫ δ

0

[− ln(x)]n−1

(n− 1)!
− [− ln(x)]n−2

(n− 2)!
dx

=
x[− ln(x)]n−1

(n− 1)!

∣∣∣∣δ
0

=
δ[− ln(δ)]n−1

(n− 1)!
.



Finally, the expected value of Z is

E(Z) =
∞∑
n=1

nqn

= δ +
∞∑
n=2

n
δ[− ln(δ)]n−1

(n− 1)!

=
∞∑
m=0

(m+ 1)
δ[− ln(δ)]m

m!

=
∞∑
m=0

δ[− ln(δ)]m

m!
+
∞∑
m=1

δ[− ln(δ)]m

(m− 1)!

= δ exp[− ln(δ)]− ln(δ) · δ exp[− ln(δ)]

= 1 + ln(1/δ).

Solution 2. A short calculation shows that if X is a uniform random variable on [0, 1], then
U = − lnX is an exponential random variable with expected value λ = 1, and probability
density function pU(t) = e−t for t ≥ 0. Note that this applies to each of

X1 = x1/x0 , X2 = x2/x1 , . . . , Xn = xn/xn−1 , and that the product X1X2 · · ·Xn equals xn .

Thus if U1 , U2 , . . . , Un , . . . are the corresponding exponential random variables, the problem
is equivalent to finding the expected number Z = Z(D) of i.i.d. samples that must be taken
to get U1 + · · ·+UZ > D, where D = − ln δ = ln(1/δ). By “First-Step Analysis” (considering
what the situation is after the first sample) we see that

Z(D) = 1 +

∫ D

0

Z(D − t)pU(t) dt = 1 +

∫ D

0

Z(D − t)e−t dt

= 1 + e−D
∫ D

0

Z(u)eu du .

Differentiating with respect to D gives

Z ′(D) = −e−D
∫ D

0

Z(u)eu du+ e−DZ(D)eD

= −(Z(D)− 1) + Z(D) = 1,

where the second line follows by substituting for the integral using the First-Step Analysis
equation. Thus Z(D) = Z(0) +D = 1 +D = 1 + ln(1/δ).

Solution 3. Note that given xk−1 ≥ δ , the probability that xk is not smaller than δ is
(xk−1 − δ)/xk−1 ≤ 1− δ. Hence the probability that Z = n is bounded above by (1− δ)n−1.
Thus the expected value of Z is bounded by the sum of the convergent series

∞∑
n=1

n(1−δ)n−1,

and thus is finite.
Let f(δ) be this expected value, as a function of δ. Note that this function is monotone

decreasing. If after one step of the iteration we are at x1 ≥ δ, then rescaling by a factor
1/x1 , we see that we have essentially returned to the original problem but with δ replaced
by δ/x1 . Thus

f(δ) = 1 +

∫ 1

δ

f(δ/x) dx.



Letting g(t) = f(1/t) and making the substitution u = tx, this becomes

g(t) = 1 +
1

t

∫ t

1

g(u) du.

Since f is monotone decreasing, g is monotone increasing and hence integrable. Thus it
follows from this functional equation that g is continuous for t > 0. Hence the integral in
the functional equation is a differentiable function of t, and it follows that g is differentiable.

Multiplying both sides of the functional equation by t and then taking the derivative of
both sides leads to

g(t) + tg′(t) = 1 + g(t), so tg′(t) = 1.

Integrating and using the initial condition g(1) = 1, we get g(t) = 1 + ln t and hence
f(δ) = 1 + ln(1/δ).

B4. Let n be a positive integer, and let Vn be the set of integer (2n+ 1)-tuples

v = (s0, s1, · · · , s2n−1, s2n) for which s0 = s2n = 0 and |sj − sj−1| = 1 for j = 1, 2, · · · , 2n.

Define

q(v) = 1 +
2n−1∑
j=1

3sj ,

and let M(n) be the average of
1

q(v)
over all v ∈ Vn .

Evaluate M(2020).

Answer.
1

4040
.

Solution. We will show that M(n) =
1

2n
for all n, by partitioning Vn into subsets such

that the average of
1

q(v)
over each subset is

1

2n
. First note that giving an element v ∈ Vn is

equivalent to giving a sequence of length 2n consisting of symbols U (for “up”) and D (for
“down”) so that each symbol occurs n times in the sequence; the symbol in position i is U
or D according to whether si − si−1 is 1 or −1. With this representation of elements of Vn ,
there is a natural “cyclic rearrangement” map σ : Vn → Vn which moves each of the symbols
one position back cyclically, that is, the symbol in position 1 moves to position 2n, and for
every j > 1 the symbol in position j moves to position j− 1. In terms of the (2n+ 1)-tuples
v = (s0, s1, · · · , s2n−1, s2n), this works out to

σ(v) = (t0, t1, · · · , t2n−1, t2n) where tj = sj+1 − s1 ,
with the understanding that subscripts are taken modulo 2n. (Note that t0 = t2n = 0 and
that |tj − tj−1| = |sj+1 − sj| = 1.)

From the representation using the symbols U andD, we see that σ2n(v) = v. In particular,
for any v ∈ Vn , the list of elements v, σ(v), σ2(v), . . . , σ2n−1(v) runs through the orbit under

σ of v a whole number of times. So the average of
1

q(w)
for w on that list of elements is

the same as the average over the orbit of v; because the orbits partition Vn , it is enough to

show that this average is
1

2n
for any v.



Now note that

1

q(σ(v))
=

1

1 +
2n−1∑
j=1

3sj+1−s1

=
3s1

3s1 +
2n−1∑
j=1

3sj+1

=
3s1

q(v)

because 3s2n = 1. Applying this with v replaced by σ(v) yields

1

q(σ2(v))
=

3s2−s1

q(σ(v))
=

3s2

q(v)

and similarly, by induction on j,
1

q(σj(v))
=

3sj

q(v)
.

To average
1

q(w)
over the list v, σ(v), σ2(v), . . . , σ2n−1(v), we add these answers for

j = 0, 1, . . . , 2n− 1 and divide by 2n. But the sum of these answers is
q(v)

q(v)
= 1,

so we are done.

B5. For j ∈ {1, 2, 3, 4}, let zj be a complex number with |zj| = 1 and zj 6= 1.

Prove that 3− z1 − z2 − z3 − z4 + z1z2z3z4 6= 0 .

Solution 1. Let ek(Z) denote the kth elementary symmetric function of Z := (z1, z2, z3, z4),

so that we want to show 3 − e1(Z) + e4(Z) 6= 0. We will transform the variables first by

zj = 1 − yj and then by yj = 1/wj. The condition zj 6= 1 becomes yj 6= 0, so that wj is

indeed defined, while the condition |zj| = 1 implies Re(wj) = 1/2. Meanwhile, using similar

notation for the elementary symmetric functions of the y’s and the w’s, we find that

3− e1(Z) + e4(Z) = e2(Y )− e3(Y ) + e4(Y ) =
1− e1(W ) + e2(W )

e4(W )
.

Now let

wj =
1

2
+ i vj .

Then

wjwk =
1

4
− vjvk +

i

2
(vj + vk),

so for the symmetric functions we have

e1(W ) =
∑

wj = 2 + i e1(V ), e2(W ) =
∑
j<k

wjwk =
3

2
− e2(V ) +

3i

2
e1(V )

and it is enough to show that

1− e1(W ) + e2(W ) =
1

2
+
i

2
e1(V )− e2(V )

is never zero for real V = (v1, v2, v3, v4).



If this quantity were zero, taking real and imaginary parts we would have e1(V ) = 0,
e2(V ) = 1/2. However, because V is real we have

e1(V )2 =
(∑

vj

)2
=
∑

v2j + 2
∑
j<k

vjvk ≥ 2e2(V ),

so those values for e1(V ) and e2(V ) are impossible.

Solution 2. We use a bilinear (linear fractional) transformation to map the circle |z| = 1

to the real line. Because zj 6= 1, it seems natural to map 1 to the point at infinity; a

transformation that will do these things is given by

w = i
1 + z

1− z
⇔ z =

w − i
w + i

.

To check, |z| = 1 implies |w − i| = |w + i|, from which it follows that w is real.

By (a significant amount of) direct computation we find that

3− z1 − z2 − z3 − z4 + z1z2z3z4

=
8− 4i(w1 + w2 + w3 + w4)− 4(w1w2 + w1w3 + w1w4 + w2w3 + w2w4 + w3w4)

(w1 + i)(w2 + i)(w3 + i)(w4 + i)
.

If this were zero for real numbers wi , taking real and imaginary parts of the numerator we
would get

8−4(w1w2+w1w3+w1w4+w2w3+w2w4+w3w4) = 0 and w1+w2+w3+w4 = 0, respectively.

However,

8− 4(w1w2 + w1w3 + w1w4 + w2w3 + w2w4 + w3w4)

= 8 + 2
[
w2

1 + w2
2 + w2

3 + w2
4 − (w1 + w2 + w3 + w4)

2
]

is always positive when w1 + w2 + w3 + w4 = 0, completing the proof.

B6. Let n be a positive integer. Prove that
n∑
k=1

(−1)bk(
√
2−1)c ≥ 0 .

(As usual, bxc denotes the greatest integer less than or equal to x.)

Solution. Let α =
√

2− 1; note that this irrational number has the crucial property

1

α
=
√

2 + 1 = 2 + α.

Also, let ak = (−1)bkαc. The sequence (ak) is formed by the terms of the series whose partial
sums we are looking at, and it consists of “signs” ±1. Because 1/3 < α < 1/2, the signs come
in runs of two or three equal signs, starting with a run of two 1s because bαc = b2αc = 0
and b3αc = 1. Now suppose we omit two of the signs from each run, so the runs of two
equal signs are deleted altogether and each run of three equal signs is replaced by a single
sign. Denote the new sequence of signs by (bk); that is, bk is the value taken by the k-th run
of length 3 in the sequence (ak) .

We will show below that ak = bk . Assuming this for now, we can prove the desired result
by a reduction argument, as follows. Suppose that the result is false, and let N be the least



value of n for which
n∑
k=1

ak < 0. Then aN−2, aN−1, aN must be a run of three −1s, because

every run of fewer −1s is preceded by a run of 1s of at least equal length, so that omitting
both those runs can only decrease the partial sum. Suppose that up to and including this
point, there are m runs of length 3. If we pass from the sequence (ak) to the sequence (bk),
we delete two entries from each run, starting with two 1s and ending with two −1s, so the
sum of all the terms will be unchanged. That is,

m∑
k=1

bk =
N∑
k=1

ak < 0 ,

and because ak = bk we have
m∑
k=1

ak < 0. But m ≤ N/3 , contradicting the minimality of N .

It remains only to prove that ak = bk. Suppose that the k-th run of length 3 is the (t+1)-st
run overall, that is, the run for which the floor is equal to t. Then bk = (−1)t. There are
2t+(k−1) terms before this run, so it consists of the terms with subscripts 2t+k, 2t+k+1,
and 2t+ k + 2, and we have the inequalities

t < (2t+ k)α , (2t+ k + 2)α < t+ 1 .

Isolating k in each of these, we get

k > t(
1

α
− 2) = tα , k < (t+ 1)(

1

α
− 2) = (t+ 1)α ,

so tα < k < (t+ 1)α and thus bk/αc = t. But k/α = k(2 + α) = 2k + kα, so bkαc = t− 2k,

ak = (−1)bkαc = (−1)t−2k = (−1)t = bk , and we are done.
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