Constructing a Decimal Analogue
of Plimpton 322

One of the most fascinating mathematical items is a small (approximately 13 cm x 9 cm x 2 cm) Old
Babylonian clay tablet labeled Plimpton 322, which is usually dated to around 1900-1600 BCE. This
tablet contains a table of numbers that are expressed in sexagesimal' (base 60) notation, written in the
wedge-shaped cuneiform script typical of ancient Mesopotamian civilizations. The table has attracted
interest from scholars because it appears to represent a list of primitive Pythagorean triples: triples of
strictly positive integers (a, b, c) satisfying the equation a?+b* = ¢? and such that a, b, c have no common
factors. Some familiar examples of such triples are (3, 4, 5) and (5, 12, 13), which can also be interpreted
as the three sides of a right triangle.

The tablet Plimpton 322 and the historian Daniel Mansfield

The actual purpose of Plimpton 322 has long been debated, and it is also not certain how the displayed
numbers were originally constructed. In this activity, you will use one of the possible algorithms for how
this was done, known as the Reciprocal-Pairs algorithm, to construct an analogue of Plimpton 322 in
decimal?® (base 10) notation.

You may work in groups in order to divide up effort and check your calculations!

'The word sexagesimal comes from the Latin word sexagesimus, meaning ‘sixtieth.’
2The word decimal also has a Latin root: decimus, meaning ‘tenth.’
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The numbers listed in Plimpton 322 itself, as well as those that arise when constructing them with the
Reciprocal-Pairs algorithm, are all rational numbers that have only finitely many digits when expressed
in base 60; that is, they have terminating sexagesimal representations. If we translate these numbers into
base 10, however, some of them have infinitely many digits, or non-terminating decimal representations.’
Before you start your construction of a decimal analogue of Plimpton 322, it is therefore important
to understand which rational numbers n/d have terminating decimal representations, and also how to
convert them from fractional form to decimal form. The two exercises below provide some reminders,
which might also save you some computational work in the later exercises.

(1) Each of the following fractions is in lowest terms. Without using division, find the decimal
representation of each. Do this by multiplying the numerator and the denominator by the same
number in order to turn the denominator into a power of 10.

14

(a) %5

33 33
®) 400 24.52

431

© % 5

(2) Suppose that n/d is a rational number written in lowest terms that has a terminating decimal
representation. Explain why the only prime factors of the denominator d must be 2 and/or 5.

3For example, in base 10, we write 1/3 = 0.3333... to represent that we need non-zero values in every one of the
infinitely many places after the decimal point. However, since 1/3 = 20/60, we can write 1/3 in base 60 using a non-zero
value in just the sixtieths place; that is, in the first place after the ‘sexagesimal point,” we write the symbol (or symbols) that
represent ‘twenty’ in the specific numeral system that we are using (e.g., cuneiform, Hindu-Arabic numerals).
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Time now to get started on the construction of your decimal analogue of Plimpton 322. You will do this
in a series of steps, each involving the creation of an auxiliary list or table that will help you keep track
of the various numbers you will need to compute.

(3) We call a positive integer regular for base 10 (or a regular decimal) if its reciprocal has a terminating
decimal representation. Notice that 1 is the smallest regular decimal. By the previous exercise, the
only other way for an integer to be regular for base 10 is if its prime factors are only 2 or 5. For
example, 80 = 24.51s regular for base 10, but 15 = 3 - 5 is not.

List all regular decimals from 1 to 100.

(4) Complete the table below as follows:

For each given value of r, find the smallest regular decimal R which is greater than 7 and is coprime
to r (this means that 1R and  have no common factors other than 1). Then find the associated pair
of reciprocals R/r and r/R; write these values both as fractions in lowest terms and in decimal
form.*

r R R/r r/R R/r r/R row #

(fraction) (fraction) (decimal) (decimal)

16

25

DN B W

“In the ‘Bonus Explorations’ section of this activity, you will have a chance to explore why this table only includes five
TOWS.
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(5) For all values of r and R in your table from part (4), calculate and write down the values of:
1 /R T 1 /R r
L=-|——-—— d H=>-(Z4+ ).
2 (r R) an 2 (r + R>
Record these values in the table below both as fractions in lowest terms and in decimal form.

Don’t worry if you don’t see where these expressions for H and L are coming from
yet—we’ll come back to this after you have completed the full construction algorithm.

L (fraction) L (decimal) H (fraction) H (decimal) row #

Before going to the next step in your construction, pause here to see if you can find any possible
relationships between the values of H and L listed in the table above. Write down at least two
observations or conjectures’ that you have in the space below. Also try testing any conjecture that
you come up with on all the rows in the table.

SRemember that Plimpton 322 is related to Pythagorean triples!
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(6) For the values of L and H in your table from part (5), fill in the table below with the following
values:

e the square of H, written in decimal form;

e the least numerator n;, of L;

The ‘least numerator of L’ is the numerator of the reduced fraction form of L.

For instance, given L = 1% = g the least numerator is ny, = 3.
e the least numerator ny of H.

Use the row ordering from the previous steps, and notice that the quantity H? is in decreasing

order.
4
H? (in decimal form) nr ny row #

1

2

3

4

L 5

Well done! You have constructed a decimal analogue of Plimpton 322!

Pause again here to make some observations and look for patterns in your final table. Write down at least
two things you notice about it. Also write down at least two questions that you have about the table or
the algorithm you used to construct it.

Antonella Perucca and Deborah Stranen, “Converting the Old Babylonian Table ‘Plimpton 322’ 5
into the Decimal System as a Classroom Activity,” MAA Convergence (October 2020)



Now, let’s explore how the steps of the Reciprocal-Pairs algorithm that you used to build your decimal
analogue of Plimpton 322 relate to Pythagorean Triples and to right triangles.

(7) Let’s start with the question:
What does Plimpton 322 have to do with Pythagorean Triples?

Look back at each row of your table in part (5). One thing that you may have noticed is that the
rational numbers L and H in each row have the same least denominator® Let’s call this shared least
denominator d.

(a) Use the table below to list the numbers (ny, d, ny).

nr d N row #

[ I S VS I N

(b) For each row of this table, show that the three natural numbers (ny, d, ny) form a primitive
Pythagorean triple. Remember that this means checking two things:

(i) nr,d,ng do not have common factors and (i) n? + d* = n,.

Notice that, by part (b) and the Pythagorean Theorem, the five specific values of ny,, d, ny in your
table from part (a) are the side lengths for a right triangle. In order to show that this is always the
case for values of ny,d, ny that come from the Reciprocal-Pairs algorithm, it will be helpful to
first take a closer look at an earlier step of this algorithm.

®Indeed, this is true every time we use the Reciprocal-Pairs algorithm. In the ‘Bonus Explorations’ section of this activity,
you will have a chance to explore why this is always the case.
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(8) Now let’s move to the question:
What are the numbers L and H?

One interpretation of the rational numbers L and [ that has been suggested by historians of
mathematics is that they represent the lengths of the short leg and the hypotenuse of a right triangle

1

whose long leg measures 1. This means that the values of L and H must satisfy the Pythagorean
equation,” with H as the hypotenuse length:
L*+1=H*

Recall from part (5) that the values of L and I come from the following algebraic formulas,
starting with two regular decimal integers r and R:

1 /R r 1/R r

Use algebra to verify that these expressions for L and H satisfy the equation L? + 1 = H?2.

"Since the long leg of the triangle measures 1 and L is its short leg, it is also necessary for L to be a positive number with
L < 1. By inspection, you can see this is true for the entries in your table from part (5). In the ‘Bonus Explorations’ section
of this activity, you will have a chance to explore the question of how to make sure this is always the case.
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(9) Finally, we come back to the question
Can we always interpret ny, d and ny, as the side lengths for a right triangle?

So far, you have only shown this is possible for the five triples in your table from part (7). Now that
we have connected the rational numbers L and H to a right triangle via the Pythagorean Theorem,
let’s go back to the general case. Remember first that the whole numbers ny, d and ny are the
least numerators and denominators of the rational numbers L and H.

Show (via the Pythagorean Theorem) that we can always interpret ny, d and ny, as the side lengths
for a right triangle. Do this by using some algebra, starting with the equation L? + 1 = H?2,

Well done! Here ends this journey through Old Babylonian mathematics!

You can use the space below to write down any closing thoughts or questions
that you have about the ideas you’ve met along the way

Still feeling adventurous? Take a look at the ‘Bonus Explorations’ section of this activity.
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Bonus Explorations for the Activity ‘Constructing a Decimal Analogue of Plimpton 322’

(A) Inpart (8), you showed that the rational numbers L and H always satisfy the equation L?+1 = H?.

But as we remarked in footnote 7, in order to interpret L and / as the lengths of the short leg and
the hypotenuse of a right triangle whose long leg measures 1, there is one more requirement that
must hold. Namely, to make sure that L really is the short leg, it is also necessary for L to be a
positive number with L < 1.

Of course, the value of L in turn depends on the initial values that we choose for  and R. This
means that to ensure that 0 < L < 1, we need to place some restrictions on the values of r and R.

As a bonus exploration, try your hand at proving the following fact:

2 \r
the chosen values of r and R satisfy the inequality r < R < (14 /2)r.

1 /R
The value of L = — <— — %) satisfies the inequalities 0 < L < 1 if and only if

Or, if you’re not quite feeling adventurous enough to do the full proof, go back to part (4) and
check that the values of r and R there satisfy the inequality r < R < (1 + v/2)r.

(B) You may have wondered why the table you constructed in this activity contains only 5 rows, even
though your list of regular decimals in part (3) is much longer. Part A helps us see why! We
now know that in order to keep 0 < L < 1, we must start with values of r and R that satisfy the
inequality 7 < R < (1 4+ 4/2)r. As it turns out, the table you constructed in part (4) is complete
for regular decimals 7 and R below 100 in the following sense:

If we pick further pairs of numbers (r, R) from the list in part (3) with
r<R<(1+V2)r

we do not obtain further values for the pair of reciprocals R/r and r/R.

You can check this claim out by computing a few more pairs of reciprocals R/r and r/ R, starting
with different choices for r and R from your list in part (3). First, check whether your selected pair
satisfies the inequality » < R < (1++/2)r. If it does, then verify that the reciprocal pairs r /R and
R/r you get from that pair are already included in your table from part (4). To make this a more
complete exploration, be sure to try at least one coprime example and one non-coprime example.

(C) One final mystery that you might have wondered about is why the rational numbers A and L
produced by the Reciprocal-Pairs algorithm always share the same least denominator. This is
again due to the equation from part (8): L? + 1 = H2.

In fact, one can prove that any two rational numbers  and y satisfying the equation 22 + 1 = 7>
must have the same least denominator. If you are interested in number theory, try proving this
yourself as a bonus exploration. Not sure where to start? Ask your instructor for a hint!
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