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1 Introduction

The study of prime numbers first began with Euclid in approximately 300
BC. In his monumental Elements he laid the foundation of the Fundamental
Theorem of Arithmetic and established the basic multiplicative nature of primes.
However, ever since their discovery, any attempt to understand the additive
nature of primes has been confounded. As a result, two landmark problems
have risen as representatives of the efforts in the field: the strong and weak
Goldbach Conjectures. This paper will primarily examine the development of
the circle method and its use to address the weak conjecture. It will establish
basic results in Prime Number Theory and then trace the evolution of the Circle
Method as it has been adapted in efforts to prove the weak conjecture. This
paper posits that the development of the proof of the weak conjecture is mirrored
by development in the bounds of primes in arithmetic progression.

1.1 Goldbach’s Conjectures

The two Goldbach conjectures first came about in a letter from Christian
Goldbach and Leonhard Euler between June 7th, 1742. Translated, the conjec-
ture is stated,

Every number N which is a sum of two primes is a sum of as many
primes including unity as one wishes (up to N), and that every
number > 2 is a sum of three primes.

In particular, Golbach considered 1 as a prime in his original formulation and
had a very different perspective. Euler then brought up in his reply on June
30th that the first statement, that if N is the sum of two primes, then it is a
sum of as many primes as one wishes, followed from a previous observation by
Goldbach that every even number is the sum of two primes [1, Chapter XVIII].
The problem is thus now split into two parts, the first of which is Goldbach’s
Strong Conjecture, also known as his Even Conjecture or his Binary Conjecture.

Conjecture 1.1 (Strong Goldbach Conjecture). Every even number greater
than or equal to four can be the sum of two primes.

Similarly, the other part is his Weak Conjecture, also known as his Odd
Conjecture or his Ternary Conjecture, is simply described

Conjecture 1.2 (Weak Goldbach Conjecture). Fvery odd number greater than
or equal to seven can be the sum of three primes.

Early efforts were largely unsuccessful. Many statements were made without
proof. One such statement was made by Euler in 1780 where he said every
number of the form 4n + 2 is the sum of two primes of the form 4k 4+ 1 and
verified this for all 4n + 2 < 110. Other statements described properties related
to Golbach’s problems. For instance, in 1879 F. J. E. Lionett proved that, for x
the number of representations of 2a as the sum of two odd primes, y the number



of representations of 2a as the sum of two distinct odd composite numbers, z
the number of odd primes < 2a, and ¢ = [§], that ¢ + 2 = y + 2. In relating
this back to Goldbach’s problem, he stated it was probable that there are some
cases where ¢ = y + z, hence that = 0, though he gave no support to the
statement [1, Chapter XVIII].

1.2 The Distribution of Primes

The lack of major results before the development of the circle method in
the efforts against Goldbach’s problems can be roughly attributed to a lack of
“handle” on which the mathematicians could grasp. This began to change as
what is now known as the Prime Number Theorem was developed. This section
provides a brief history of the development of the Prime Number Theorem and
related theorems for arithmetic progressions to create a framework by which
results of the circle method may be understood. For a more in-depth treatment
[2] and [7] are invaluable.

In particular, mathematicians had no way of estimating the number of primes
from unity to some number. This function, denoted 7 (x) is of great importance
when attempting to solve problems of prime numbers. The first steps towards
estimating 7(x) were made by A. M. Legendre culminating in 1808 with the
conjecture of the approximation
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where lim,_, o A(z) = 1.80336.... He also conjectured about primes in arith-
metic progression, where 7, o (), for relatively prime k and I, gives the number
of primes less than x of the form gn + a,

T, (x) = 00 as & — 0. (2)

Essentially, that there will be infinitely many prime numbers of any such appro-
priate form. This was later proved by Dirichlet. The proof is outside the scope
of this paper, but is treated nicely in [2].

In contrast to Legendre’s approximation for 7(z), C. F. Gauss asserted that

xr
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2 logt
was a better approximation for 7(x). He came to this logarithmic integral
as a good approximation for the number of primes up to = as the result of
computations which he conducted in his spare time. He would count primes
in intervals of 1000 when he has “an idle quarter of an hour” [2, Appendix B,
eventually compiling a study up of the distribution of primes up to 3000000. He
suspected that the number of primes in an interval [a,b) was approximately
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His computations seemed to corroborate this suspicion. Gauss had performed
these computations between 1792 to 1793, but have never shared his results
until a correspondence with an astronomer Enke in 1849. It was in this corre-
spondence that Gauss was made aware of the work of Legendre in the subject.
Gauss observed that, though Legendre’s error term, the difference between the
approximation and actual amount of 7(z), was smaller than Gauss’, the loga-
rithmic integral’s error term grew more slowly than Legendre’s. Thus, Gauss
suspected that the logarithmic integral was more accurate for higher numbers.

The next major step was Bernhard Riemann connection of the study of num-
bers to the complex plane as he developed what is now called the Riemann Zeta
function. For complex s,

()= —. (5)

The connection of (5) to the prime numbers comes from what is called Riemann’s
explicit formula

w<x>x;f§f§;;mg<1z2> (6)

where p traverses the non-trivial zeros of (5) and

Gy = logp. (7)
p" <z
p prime
meN
The mathematics leading to this formula, while monumental, is not too impor-
tant for this discussion. However, what is important is that Riemann’s explicit
formula intimately links the zeros of ((s) with prime numbers. This is impor-
tant because it allows for results in prime numbers to be found by studying the
Riemann’s zeta function.

One such result is the Prime Number Theorem. Poussin and Hadamard
proved independently in 1896 that {(1+4t) # 0 for all ¢t. By proving this region
of the Riemann Zeta function was free of zeros, the are necessary implications
on the distribution of primes. In particular, they proved

Theorem 1.3 (Prime Number Theorem).
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This means that the number of primes less than x and the fraction z/logx
get closer and closer together as x — oo. The prime number theorem can be
stated in another way.

m(x)

+ o

) (9)
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where o527

) is a function f(x) satisfying the relationship

f(z)

00 z/logx

=0 (10)

so that o(lozz) is outpaced in growth compared to lozx and therefore becomes
insignificant at large x. In this way we can see how results concerning the
zeros of the Riemann zeta function can lead to results about the distribution of

primes.

Bernhard Riemann made many conjectures about the zeta function when he
first studied it. Today, almost all of these conjectures have been answered.
There is still one though which has seen no answer. It concerns the zeros of the
zeta function, and thus also has profound implications for the distribution of
primes.

Conjecture 1.4 (Riemann Hypothesis). All non-trivial zeros of ((s) have real
part 1/2.

In essence, all non-trivial zeros lie on the line in the complex plane that has
real part of 1/2. This allows for very sharp approximation on m(zx).

content... (11)

By extending the Riemann hypothesis to include the entire class of functions of
which the zeta function is just one, we find the Generalized Riemann Hypothesis,
or GRH. Sharp bounds can also be introduced for number of primes in arithmetic
progression, m, 4, by supposing the GRH.

Li 1o

Tga(T) = @ + O(z/“logx). (12)

2 The Hardy-Littlewood Circle Method

One of the most fundamental methods in the study of Additive Prime Num-
ber Theory is the Circle Method. The Circle Method was first conceptualized
in Asymptotic formulae in combinatory analysis [5] by G.H. Hardy and S. Ra-
manujan in 1918, approximately 20 years after the development of the prime
number theorem. However, the method was not formalized for general use until
a series of papers by Hardy and J. E. Littlewood in 1919 in a paper titled A
new solution to Waring’s problem. Within this series of papers Hardy and Lit-
tlewood also addressed the use of the circle method in solutions of Goldbach’s
conjectures — see [3] and [4]. In this section we will overview the circle method
and its application to the weak Goldbach conjecture. In particular, we will see
that all applications of the circle method follow the same structure of 3 main
parts:

1. Construction of the generating function and corresponding integral



2. Splitting of the integral into major and minor arcs
3. Estimation of the major and minor arcs

We will then examine a timeline of results which utilize the circle method. We
will also discuss differences between Hardy and Littlewood’s approach and a
refinement on the process that was innovated by I. M. Vinogradov.

2.1 Hardy-Littlewood’s Approach

Here we introduce the basic ideas behind the circle method and its application
to a Goldbach’s weak conjecture. Consider the set of prime numbers

A=1{2,357,.. } (13)

Then consider the function r(n) which returns the number of representations of
n as the sum of 3 primes, or 3 elements of A. We wish to derive a generating
function for r(n). Let

Flz)=> a" (14)
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As r(n) is the coefficient to the 2™ term in F(x)3, it is the generating function
of r(n). In order to recover the coefficients of the generating function, Hardy
and Littlewood set up an integral in the complex plane over a circle C with

C={ze€C : |z|=r0<r<1}. (16)

The integral they set up is
1 F(x)3

211 C l’nJrl

(17)

Utilizing a basic result from complex analysis which essentially states
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21 Je 0 otherwise



they can evaluate the integral
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and recover r(n). Of course, setting up such a recovery is functionally pointless
and is merely used to illustrate the equivalence of the circle integral and r(n).
What they can, and do, accomplish instead is to establish bounds for the circle
integral which depend on n and show that there is a constant N such that,
for all n > N, the integral is greater than or equal to one. This is done by
splitting the integral into what are called major and minor arcs. Hardy and
Littlewood’s bounds in their work are however dependent on the Generalized
Riemann Hypothesis. Before expounding on the usage of these major and minor
arcs, we examine a technical refinement by Vinogradov who works around the
necessity of the GRH.

2.2 Vinogradov’s Approach

In I. M. Vinogradov’s 1937 work Some theorems concerning the theory of
primes [9], he reformulates the approach used by Hardy and Littlewood so that
the bounds are not conditional on the assumption of the Generalized Riemann
Hypothesis. For notational simplicity, set

e(z) = ¥, (20)

Usually, x is taken in Vinogradov’s formulation when x € R/Z where R/Z
denotes the quotient group under addition which is cyclic over some real interval
of length 1. Note that e(x) taken by x € [0, 1] yields the unit circle.

The first step in Vingadov’s reformulation is a new choice of generating func-
tion. Rather than use a power series sum like F'(z) in equation (15), Vinogradov
uses a trigonometric sum

F@) =3 e(a). (21)

acA

By processes similar to (15) and (19), he develops the trigonometric generating

function .
P =) r(h)eliz) (22)
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and the integral
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Figure 1: Example of a fourier series.—en.wikipedia.org

However, this integral is subject to issues of convergence which are solved in
Hardy-Littlewood’s formulation by the choice of the contour C. A key insight
of Vinogradov is that it is sufficient to consider

P
fr(@)® = ri(ie(jz) (24)
j=1

where r/(n) works similarly to r(n) but on an correspondingly truncated and
finite set. With an appropriately chosen P, dependent on n, r'(n) = r(n) and,
for all P’ > P, fp/(z) = f(z). With this consideration,

1 T 3
/0 fe ’me)> dz (25)

converges well and appropriate bounds dependent on n can be found.

2.3 Major and Minor Arcs

A key insight to estimating the integral in (25) lies in the observation that
it is a Fourier integral and, as a result, its behavior is nicely described by
examining two different sections of the interval of integration: the so-called
major and minor arcs. While in the major arcs, we expect for there to be
certain asymptotic behavior, and while in the minor arcs, we expect for there to
be different asymptotic behavior. To illustrate this concept with an unrelated
Fourier series, refer to Figure 1. Those areas where the function is relatively
consistent are analogous to the major arcs, just as the areas of transition are
analogous to the minor arcs.

Informally, analysis of the integral in (25) reveals that when « is near a fraction
with a “small” denominator, fp(z) is expected to be “large”, hence the major
arcs, and otherwise, when z is in a minor arc, it is transitioning across the unit
circle, and the contribution of fp(z) is then expected to be relatively small.



Formally, we find a constant () which is determined by P and denote a major
arc, for relatively prime s and ¢, (s,t) =1, and 1 < s <t < Q,

_[s_Q@ s Q@
Em“_[t tn’t+tn] (26)

so that the set of all major arcs is

M = U U M ¢ (27)

t<P 1<s<t
(s,t)=1

and the set of all minor arcs is correspondingly
m = [0, 1]\MM. (28)
The integral to find lower bounds on r(n) can then be split up accordingly.

fP fP

(29)

Bounding of the integral then rests on finding bounds for the behavior over
the major arcs and then showing the any contribution by the minor arcs is
subsumed by the asymptotic behavior of the main term of the estimation of
the major arcs. Unfortunately the path to bounding Vinogradov’s integral be-
low, and by implication bounding r(n), involves mathematics well outside the
assumption of knowledge of this paper. We can mention the main points of
Vinogradov’s estimation. Bounding of the major arcs typically resulted in the
product of the singular series, G(n) and the singular integral, J(n) where

eI (e goe) o
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Thus, improvement of the bounds of the major arcs typically relied on improve-
ment on the bounds of the singular integral, J(n). On the other hand, study of
the minor arcs centers around the study of an expression S with

S = Z > ud)A(le(akl) (32)

k=1u<I<® d|k
d<u

where the choice of u depends on n. Following, we examine the development of
results in improvements to proofs Goldbach’s weak conjecture.



2.4 Results utilizing the Circle Method

In this section we will give an overview of results in the endeavor towards
proof of Goldbach’s weak conjecture. In 1920 Hardy and Littlewood introduced
the circle method as a tool to address Goldbach’s conjectures [3]. Under the
assumption of the Generalized Riemann Hypothesis, which gave strong bounds
for primes in arithmetic progression, they found

n
so that
lim # =1 (34)
nree 2(logn)? 6(’/1)

In particular using these bounds confirmed Goldbach’s weak conjecture for all
n > 10%.

Vinogradov improved upon Hardy and Littlewood’s efforts by overcoming
the reliance on the Generalized Riemann Hypothesis [9]. By developing a new
method for bounding sums over primes without using the Generalized Riemann
Hypothesis, he was able to remove the reliance. He found then

n2

r(n) = 2(Tgn):SG(n) + O(n*(logn)™*). (35)
This result is similar to that of Hardy and Littlewood with just the added
asymptotic function. This is the result of using Siegel-Walfisz’s theorem provid-
ing bounds for primes in arithmetic progression. While this theorem allowed for
Vinogradov’s result, it was deficient in that he was left unable to evaluate the
right side of the above equation, and was thus unable to compute the constant
after which all odd numbers would satisfy the weak Goldbach conjecture. It
was not until 1939 that Borodzin was able to overcome the deficiency of the
Siegel-Walfisz theorem and compute a numerical constant [6]. He found that

the weak conjecture was satisfied using Vinogradov’s method for all n > 337,

This numerical constant was marginally improved over time but failed to be
lowered to the point such that all remaining cases less than the constant could
be exhaustively verified computationally [8]. Ground was broken though in
1997 when Deshouillers, Effinger, Riele, and Zinoviev reimplemented the use of
the Generalized Riemann Hypothesis to improve the numerical constant. They
lowered it to the point that all n > 10?0 satisfy the weak conjecture and were
able to exhaustively verify all numbers below that constant.

Gold was proverbially struck in 2012 when H. A. Helfgott published a series of
papers in which he definitively proved Goldbach’s weak conjecture by uncondi-
tionally proving all n > 103° satisfied the conjecture and completed exhaustive



verification below that point. There were several key points of Helgott’s proof
which resulted in his success, one of which was a verification in a large region
of the complex plane that the Generalized Riemann Hypothesis. This allowed
for sharp enough bounds for primes in arithmetic progression.

3 Conclusions

That the results brought about by the utilization of the Circle Method have
come so far is nothing short of amazing. Such results are indicative of the
persistence of mathematicians through the ages. The ingredients of the succes-
sive development suggests a correlative relationship with developments on the
bounds of primes in arithmetic progression. Other improvements were technical
methods developed in order to better facilitate the use of such bounds. Ef-
forts in providing the machinery to utilize the bounds for the strong conjecture
have yet been unsuccessful, but, considering the success in the case of the weak
conjecture, they certainly warrant further study.
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