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English Translation of Servois’

“Memoir on Quadratures”

Abstract

François-Joseph Servois (1767–1847) was a French priest, artillery officer,
professor of mathematics, and museum curator. He conducted research in many
areas of mathematics, including geometry and the differential calculus. In 1817,
after a three-year period with no publications, Servois published his “Memoir
on Quadratures,” where he tackled a new area of mathematics: numerical inte-
gration. We give here an English translation of that memoir, in which Servois
addressed a debate on numerical integration techniques among the mathemati-
cians Christian Kramp (1760–1826), Joseph-Diez Gergonne (1771–1859), and
Joseph-Balthazard Bérard (1763–1844?).

We provide an analysis of Servois’ paper and a guide to reading it in our ar-
ticle, “Servois’ 1817 ‘Memoir on Quadratures’,” available in MAA’s online jour-
nal Convergence at www.maa.org/press/periodicals/convergence/servois-1817-
memoir-on-quadratures.
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Memoir on Quadratures‡

By Mr. Servois, curator of the Artillery Museum

[73]1 Quadratures are the ultimate elements by which all of the questions that
arise from the integral calculus are finally resolved, and so consequently the
most important problems in geometry and mechanics. On the other hand, it
is generally agreed that even today we still desire a completely satisfactory
method for the integration of functions of a single variable in every case, even
when we are willing to settle for an approximation. Thus, it is natural that the
announcement of a discovery of new methods, or even of simple improvements
added to known methods, produces a great sensation among analysts, and is
eagerly received by some, received with defiance and caution by others, but
with a curious interest by everyone. For my part, I confess that I read with
great satisfaction, in the Annales de mathématiques, the detailed expositions of
three new methods of approximation that came from good sources, because they
belong to professors Dobenheim,2 Kramp,3 and Bérard.4 I have participated,
with more or less the aptitude of an interested party, in the debates that they
have initiated (Annales, Vol. VI, pp. 283, 304, 372, and Vol. VII, pp. 101 and
241).5 From my diligence, more active [74] than passive, that resulted in a series
of observations that I do not hesitate to communicate to the public. These are
the reconciliation of these methods, as much amongst themselves as with those
that were previously known. These are attempts at perfection in their technical
procedures. Finally, there are theoretical insights, relating to the extent and
the effectiveness of the approximative methods that they provide. What results
will probably be new discussions which, by providing new insights, will bring us
closer to the fulfillment of so much effort; I mean the acquisition of a method
of approximation that leaves nothing to be desired.

I. Methods of approximation are ordinarily based on infinite series. Now we
know how to express the integral

∫
ydx, the general type of quadrature, as a

series in many forms. I begin by recalling the principal ones, with a summary of
the proofs, in order to dispense with the need to send a skeptical reader to other
works. To this end, I use the principal theorems on the analogy among pow-
ers, differences, and differentials–theorems now well-known–in the expression of

‡Originally published as “Mémoire sur les quadratures,” an article in Annales des
Mathématiques pures et appliquées 8 (1817–1818), pp. 73–115. In some citations, the title
begins with the words “Analise Transcendante,” because the headline of a title page in Ger-
gonne’s Annales is the editorial category to which the article was assigned. Translated from
the French by Robert E. Bradley and Salvatore J. Petrilli, Jr. Department of Mathematics &
Computer Science, Adelphi University, Garden City, NY 11530

1Numbers in square brackets represent the original page numbers of the article in Ger-
gonne’s Annales.

2Alexandre-Magnier (Magnus) d’Obenheim (1753–1840).
3Christian Kramp (1760–1826).
4Joseph-Balthazard Bérard (1763–1844?).
5[Kramp 1815a], [Gergonne 1815], [Kramp 1815b], [Bérard 1816], [Kramp 1816].
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which I use the notation of Arbogast6 (Calcul des dérivations)7 to represent the
varied state of a function.8 Thus, assuming the increment of the variable x to
be constant, and supposing

y = Fx and ω = ∆x = dx,

we have the following definitions and theorems:9

Eny = F (x+ nω) = edy, (1)

∆y = Ey − y = (E − 1) y, (2)

[75]10

dy = log (1 + ∆) y (3)

∆−1y =
∑

y = (E − 1)
−1

y

= E−1y + E−2y + E−3y + . . .+K =
(
ed − 1

)−1
y +K, (4)

d−1y =
1

ω

∫
ydx = {log (1 + ∆)}−1

y +K, (5)

where e is, as usual, the base of the system of the Naperian logarithms and K
is a quantity subject only to the condition ∆K = 0.

From (4) we immediately conclude, by the expansion of the expression(
ed − 1

)−1
, the series11∑

y =

{
d−1 − 1

2
d0 +

B1

1 · 2
d− B2

1 · 2 · 3 · 4
d3 + . . .

}
y +K

=
1

ω

∫
ydx− 1

2
y +

ωB1

1 · 2
dy

dx
− ω3B2

1 · 2 · 3 · 4
d3y

dx3
+

ω5B3

1 · 2 · · · · 6
d5y

dx5
− . . .+K,

(6)

where the coefficients

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
, . . .

6Louis François Antoine Arbogast (1759–1803).
7See [Arbogast 1800].
8The following footnote was given in [Servois 1817]: “Also, see a previous memoir on

this subject by M. Servois, Vol. V, page 93. J.D.G.” The initials “J.D.G.” are those of
the editor of the Annales, Joseph-Diez Gergonne (1771–1859). Here, Gergonne was refer-
ring to [Servois 1814a]; for a reader’s guide to and English translation of [Servois 1814a], see
[Bradley and Petrilli 2010b].

9The following line is not correct as given. Perhaps it was intended to be given as:

Eny = F (x+ nω) and Ey = edy.

10In [Servois 1817], the notation Log.x was used; however, we will use the modern notation
of log(x).

11In [Servois 1817], the term +K was omitted from the end of the first line.
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are known as the Bernoulli Numbers. They are also the coefficients of the
equation of the identity

1− 1

2
ω cot

(
1

2
ω

)
=

ω2B1

1 · 2
+

ω4B2

1 · 2 · 3 · 4
+

ω6B3

1 · 2 · 3 · 4 · 5 · 6
+ . . . . (7)

I suppose x to be positive, and that one of its antecedent values is a, to which
corresponds v = Fa. I make x−a = nω, from which a = x−nω. Let x and a be
two positive extreme abscissas of a plane curve having corresponding rectangular
ordinates y and v. Dividing the interval between these two ordinates into n
parts, each equal to ω, and assuming at each point of division, the intermediate
equidistant ordinates [76], the system of our n+ 1 ordinates may be expressed
by the double sequence12

y, E−1y, E−2y, E−3y, . . . , E−(n−1)y, E−ny;

Env, En−1v, En−2v, En−3v, . . . , Ev, v;

}
(8)

where the corresponding terms, upper and lower, express the same ordinate.
Given this, after substituting v for y in (6), and subtracting the result from (6);
if, to abridge,13 we make

Z =

∫
ydx−

∫
vda and T = ω

(∑
y −

∑
v +

1

2
y − 1

2
v

)
, (9)

we will have the series14

Z = T − ω2B1

1 · 2

(
dy

dx
− dv

da

)
+

ω4B2

1 · 2 · 3 · 4

(
d3y

dx3
− d3v

da3

)
− ω6B3

1 · 2 · · · · 6

(
d5y

dx5
− d5v

da5

)
+ . . . , (10)

in which Z is clearly the integral
∫
ydx, taken between the limits a and x, or

rather the plane area terminated by the ordinates v and y, the interval x − a,
and the intercepted arc of the curve. On the other hand, because of (4 and 8),
we have

T =
1

2
ω
(
y + E−1y

)
+

1

2
ω
(
E−1y + E−2y

)
+ . . .+

1

2
ω (Ev + v) .

That is to say, that T is the sum of the areas of a sequence of rectilinear
trapezoids each taken between two consecutive ordinates, the x-axis and the
chord of the intercepted arc; and this, along the entire extent between the
limits v and y. For the same reasons, the expression ω (

∑
y −

∑
v) is the

sum, taken between the same limits, of the rectangles having successive heights

12In [Servois 1817], the ellipses in the second sequence were missing.
13In [Servois 1817], the coefficient of y was given as 1

4
.

14Servois has given the Composite Trapezoidal Rule here, which includes an expression for
the error term.
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E−1y,E−2y, . . . , v, and the same base ω, which sum is evidently smaller than
the area Z, if the preceding sequence decreases continuously.15 Under the same
hypothesis, this other expression ω (

∑
y −

∑
v + y − v), which is the sum of

rectangles having as heights the ordinates16 y,E−1y,E−2y, . . . Ev, [77] will be
larger17 than Z. It will be entirely the contrary under the opposite hypothesis,
that is to say, if from y to v the intermediate ordinates are greater and greater.
Now, (9) is precisely the arithmetic mean of the two preceding sums, and must,
consequently, under our hypothesis, better approach the area Z more closely.
Moreover, we see what we would have needed in order to have introduced one
of these sums of rectangles in the place of T in the series (10), because if we
designate the first by T−1 and the second by T 1, we have the relations

T−1 = T − ω

2
(y − v) and T 1 = T +

ω

2
(y − v) . (11)

We also have, from formula (4),∑
F

(
x+

1

2
ω

)
=

∑
E

1
2 y = E

1
2

∑
y = E− 1

2 y + E− 3
2 y + E− 5

2 y + . . .+K,

where by letting

R = ω

{∑
F

(
x+

1

2
ω

)
−
∑

F

(
a+

1

2
ω

)}
,

we immediately conclude,18

R = ωE− 1
2 y + ωE− 3

2 y + . . .+ ωE
1
2 v, (12)

where the right-hand side is clearly the expression of the sum, taken between
the same limits, of a series of rectangles, each taken between two consecutive
ordinates, and giving for its height the intermediate equidistant ordinate. Now,
from (1 and 4), we have

∑
E

1
2 y =

(
ed − 1

)−1
e

1
2dy =

1

ω

∫
ydx− ωA

dy

dx
+ ω3B

d3y

dx3
− . . .+K, (13)

in which the coefficients A,B,C, . . . are also those of the equation of the identity
[78]

1

e
1
2ω − e−

1
2ω

=
1

ω
−Aω +Bω3 − Cω5 + . . . ,

15Servois seems tacitly to be assuming that the function F is increasing on the interval
[a, x], although he only stipulates that F (x−ω), F (x−2ω), . . . , F (a) is a decreasing sequence.

16In [Servois 1817], the variable y was missing from the term E−1y.
17In [Servois 1817], this was given as “smaller.” In these two sentences, Servois is presenting

the situation that when you have an increasing function, the area under the curve is greater
than the left-hand Riemann Sum and smaller than the right-hand Riemann Sum.

18In [Servois 1817], the second term on the right-hand side was missing a y.
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or else this other equation

1
2ω

sin
(
1
2ω

) = 1 +Aω2 +Bω4 + Cω6 + . . . .

Now, substituting v for y in (13), subtracting the result from (13), and taking
note of (12), we immediately have, between the limits a and x,19

Z = R+ω2A

(
dy

dx
− dv

da

)
−ω4B

(
d3y

dx3
− d3v

da3

)
+ω6C

(
d5y

dx5
− d5v

da5

)
−. . . . (14)

This is the series given in Exercices de calcul intégral, (part III, p. 311).20

In the spirit of the series (14), and immediately following, the author of the
excellent work that we just cited gives himself over to researching the formula
for determining the rectangular coordinates of a curve whose equation is given
only between the arc and the angle it makes, at its extremity, with the x-axis,
such as, in particular, the equation of the ballistic curve following Newton’s
Law. He arrives quite happily at his goal, but by a route for which he does not
hide his embarrassments, because in speaking of his result, he says:

The state of simplicity to which we have reduced this formula
makes it seem that it is possible to achieve it by a more direct and less
laborious route, however, without abandoning this research. . . (Ibid,
p. 327).

Indeed, we arrive quite simply to the formula in question by the following path.
In formula (6), I write θ in place of x, and21 s · sin θ in place of y. After a

slight transformation, we find22

ω

{∑
(s · sin θ) + 1

2
s · sin θ

}
= ω

∑{
s · sin θ + 1

2
∆ (s · sin θ)

}
=

∫
(s · sin θ) dθ + ω2B1

1 · 2
d (s · sin θ)

dθ
− ω4B2

1 · 2 · 3 · 4
d3 (s · sin θ)

dθ3
+ . . .+K.

(15)

[79] I then suppose that s, a function of θ, is an arc of a plane curve, determined
by the rectangular coordinates x and y and making the angle θ with the x-axis,
at its extremity; this hypothesis is expressed by the relations

dx = ds · cos θ and dy = ds · sin θ. (16)

19Servois has given the Composite Midpoint Rule here, which includes an expression for the
error term.

20See [Legendre 1811].
21Servois used “Sin.” for sine, “Cos” for cosine, and “Cot.” for cotangent. We will consis-

tently use sin, cos and cot in place of those.
22In [Servois 1817], the last term of this series (15) was k.
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First of all, we have, as we know23

s · sin θ + 1

2
∆ (s · sin θ) = s · sin θ +∆(s · sin θ)− 1

2
∆ (s · sin θ)

= (s+∆s) sin (θ + ω)− 1

2
∆ (s · sin θ)

= (s+∆s) cos

(
1

2
ω

)
sin

(
θ +

1

2
ω

)
+ (s+∆s) sin

(
1

2
ω

)
cos

(
θ +

1

2
ω

)
− 1

2
∆ (s · sin θ) .

Then, because

∆ (s · sin θ) = ∆s · sin θ + 2 (s+∆s) sin

(
1

2
ω

)
cos

(
θ +

1

2
ω

)
,

∆(s · cos θ) = ∆s · cos θ − 2 (s+∆s) sin

(
1

2
ω

)
sin

(
θ +

1

2
ω

)
,

we obtain

(s+∆s) cos

(
1

2
ω

)
sin

(
θ +

1

2
ω

)
= −1

2
cot

(
1

2
ω

)
∆(s · cos θ) + 1

2
cot

(
1

2
ω

)
∆s · cos θ,

(s+∆s) sin

(
1

2
ω

)
cos

(
θ +

1

2
ω

)
=

1

2
∆ (s · sin θ)− 1

2
∆s · sin θ.

Therefore, we will finally have

s · sin θ + 1

2
∆ (s · sin θ) = −1

2
cot

(
1

2
ω

)
∆(s · cos θ) + 1

2
cot

(
1

2
ω

)
∆s · cos θ − 1

2
∆s · sin θ

= −1

2
cot

(
1

2
ω

)
∆(s · cos θ) + 1

2
∆s ·

cos
(
θ + 1

2ω
)

sin
(
1
2ω

) .

(17)

Moreover, because

d (s · cos θ) = ds · cos θ + s · d(cos θ) = ds cos θ − s · sin θdθ,

we have by (16) [80]∫
(s · sin θ) dθ =

∫
(ds · cos θ)− s · cos θ = x− s cos θ.

23In [Servois 1817], the last term of the first line was given as − 1
2
(s · sin θ).
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I substitute this expression and the previous one (17) into the series (15),
and I have24

1
2ω

sin
(
1
2ω

) ∑[
∆s · cos

(
θ +

1

2
ω

)]
+

(
1− 1

2
ω cot

(
1

2
ω

))
s · cos θ

= x+
ω2B1

1 · 2
d (s · sin θ)

dθ
− ω4B2

1 · 2 · 3 · 4
d3 (s · sin θ)

dθ3
+ . . .+K,

where, in substituting its expansion (7) in place of 1 − 1
2ω · cot

(
1
2ω

)
, we find

immediately that

x =
1
2ω

sin
(
1
2ω

) ∑[
∆s · cos

(
θ +

1

2
ω

)]
− ω2B1

1 · 2

{
d (s · sin θ)

dθ
− s · cos θ

}

+
ω4B2

1 · 2 · 3 · 4

{
d3 (s · sin θ)

dθ3
+ s · cos θ

}
+ . . .+K. (18)

In determining K in such a way that x is the integral beginning where θ = α,
and noting that B1

1·2 ,
B2

1·2·3·4 , . . . are respectively the same as the Ao, Bo, . . . of the
Exercises, we will see series (18) coinciding perfectly with the one in the cited
work (p. 328). If we wish to have y =

∫
(ds · sin θ), it suffices to change x

to y in (18), θ to 90o − θ, and ω to −ω; this is clear. In any case, it is clear
that

∑{
∆s · cos

(
θ + 1

2ω
)}

is the approximation given for x, by the ingenious
method that Euler gave in his famous memoir (Academie de Berlin 1753),25

which since then has so occupied the authors of ballistics. That is to say, it is
the expression of the sum of the projections on the x-axis, of a series of rectified
arcs, all of which have between their extremities the same difference in polar
angle26 ω, and taking for the angle of projection the mean inclination of each
arc.

II. [81] The series (10, 14, 18) belong to the class of formulas that express the
integral

∫
ydx by means of the finite integral

∑
y and the successive differentials

dy, d2y, . . .. It is very easy to obtain
∫
ydx by differentials only. Indeed, in

supposing again that x− a = nω, or more simply x− a = n, which amounts to
taking ω as a unit, we have by Taylor’s Theorem,

y = Env = v +
n

1

dv

da
+

n2

1 · 2
d2v

da2
+

n3

1 · 2 · 3
d3v

da3
+ . . . .

Regarding n as continuous, multiplying by dn, then integrating with respect to
n between the limits 0 and n, we immediately find

24In [Servois 1817], the second term of the left-hand side of the following equation was given
as +

(
1− 1

2
ω
)
s · cos θ.

25Vol IX, pp. 321-352; this is Euler’s paper E217.
26In [Servois 1817], the term courbure was used here, literally “curvature.”
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Z = nv +
n2

1 · 2
dv

da
+

n3

1 · 2 · 3
d2v

da2
+

n4

1 · 2 · 3 · 4
d3v

da3
+ . . . . (19)

If, in this series, we change a to x, v to y, and n to −n, which amounts to
taking the base of the ordinate y as the origin of the n’s, and passing from a to
v in the negative sense of n, we will easily see that we obtain in absolute value
an area equal to Z, but with the opposite sign. Thus, we have this other series

Z = ny − n2

1 · 2
dy

dx
+

n3

1 · 2 · 3
d2y

dx2
− n4

1 · 2 · 3 · 4
d3y

dx3
+ . . . . (20)

This latter series is appropriately the one that bears the name of Jean
Bernoulli, who published it in the Acta eruditorum in the year 1694.27

By simply changing n to −n, in (19), we have the area between v and E−nv;
or between Fa and F (a− n) and, in subtracting the result from (19), we will
clearly have the area contained between Env and E−nv, or between F (a+ n)
and F (a− n). Thus, denoting this area by W , we have a third series [82]

W = 2nv +
2n3

1 · 2 · 3
d2v

da2
+

2n5

1 · 2 · 3 · 4 · 5
d4v

da4
+ . . . . (21)

Here, W becomes equal to Z, provided that we change 2n to n, and v to E
1
2nv,

that is to say, we also have

Z = nE
1
2nv +

n3

1 · 2 · 3
d2E

1
2nv

22da2
+

n5

1 · 2 · 3 · 4 · 5
d4E

1
2nv

24da4
+ . . . . (22)

E
1
2nv will be one of the equidistant ordinates, when n is an even number.

III. The series (19, 20, 21, 22) are in differentials only. We will have series
in differences only, by the same procedure if, in place of Taylor’s Theorem, we
use the Theorem of Differences28 to expand y or Env. Thus, we have29

y = Env = v +
n

1
∆v +

n

1

n− 1

2
∆2v + . . . .

Multiplying by dn, integrating with respect to n, between the limits 0 and n,
we immediately find30

Z = nv+
1

2
n2∆v+

(
n3

3
− n2

2

)
∆2v

1 · 2
+

(
n4

4
− 3n3

3
+

2n2

2

)
∆3v

1 · 2 · 3
+ . . . . (23)

27In [Servois 1817], the year given was 1674. See [Bernoulli 1694].
28This formula is usually referred to as Newton’s Forward Difference formula. See

[Burden 2016, p. 126]. We note that this is a finite series terminating with the ∆nv term.
29In [Servois 1817], the equation given below was presented as

y = Env = v =
n

1
∆2v +

n

1

n− 1

2
∆2v + . . . .

30In [Servois 1817], the following equation was not numbered (23), but it was later referenced
as (23).
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This is the series given by Mr. Kramp (Annales, Vol. VI, p. 372ff.).

IV. Here I end my exposition of series by means of which one can express
the integral

∫
ydx. We must now see what we may draw from it.

1. All of these series, like those of the theorem of differences and Taylor’s
Theorem, of which the first ones are fundamentally nothing more than
modifications or immediate consequences [83] of these, terminate when
the function Fx is of a kind that leads to differences of zero. This is the
case, as we know, for all whole rational functions31 of x, or of all parabolic
curves.32

2. Only with respect to the numerical coefficients, these series are not conver-
gent enough. They only acquire sufficient convergence when the differences
or differentials, in passing to the higher orders, diminish in value; that is
to say, when they tend to become zero. It is therefore only under this
hypothesis that they can be used to directly solve quadrature problems by
approximation, that is to say, taking for the approximate value of

∫
ydx,

a certain number of their first terms.

Under the same hypothesis–that is to say, we suppose that the difference
∆n+1Fx, for example, and the following ones are zero or taken as such–we draw
from the same series other very remarkable approximation formulas, which offer
to the calculator the great advantage of making the approximation depend only
on a number n+ 1 of equidistant ordinates, combined linearly with coefficients
that, calculated once and for all and kept in permanent tables, can be retrieved
without need of work. I turn to the examination of these methods.

The first one goes straight to the point by substituting in place of
∑

,∆, and
d in the above series, their expressions in terms of the varied states E,E2, . . .,
given by the formulas (1, 2, 3, 4), expressions that are all finite and linear,
when we suppose all differences beyond a certain order are zero. Indeed, when
we suppose

0 = ∆n+1y = ∆n+2y = . . . , we also have 0 = dn+1y = dn+2y = . . . ,

because, according to (3)

dn+1y =

(
∆− 1

2
∆2 + . . .± 1

n
∆n

)n+1

y = ∆n+1y − n+ 1

2
∆n+2y + . . . .

[84] Then the same theorems generally give, for a positive integer k,

∆ky = (E − 1)
k
y = Eky − kEk−1y +

k

1

k − 1

2
Ek−2y − . . .± y, (24)

dky =

{
(E − 1)− 1

2
(E − 1)

2
+ . . .± 1

k
(E − 1)

k

}k

y,

31I.e., polynomial functions.
32Some authors of this time referred to the graph of the function y = xn as a generalized

parabola. Later on, Servois will refer to the graph of a polynomial of order n as a complete
parabolic curve of order n.
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expressions which, after expanding, contain only linear multiples of different
orders of the varied states. Moreover (4), the integral

∑
, and consequently the

expressions T and R are immediately resolved in linear terms of the varied state.
We see, furthermore, that these substitutions in our series must ultimately lead
to the same result. The one that will make it easiest to come to this will be
the one that demands the least complicated formulas for substitutions. Now,
(23) is such a formula in which we will substitute the varied states for the
values ∆v,∆2v, . . . ,∆nv, following the simple formula (24). This is exactly the
procedure that Mr. Kramp followed, in the cited memoir (Annales, Vol. VI, p.
372) and from which he presented the table of expressions for Z in equidistant
coordinates for the values of the number n (which he calls the Divisor) from 1
to 12 inclusive. This procedure may be subjected to analytic rules that allow us
to immediately calculate the coefficients of the ordinates v,Ev,E2v, . . . in the
general case of n being any positive integer. I place these details here all the
more willingly because it may be formulas of this kind that the able geometer
calls for when he says (Vol. VII, p. 243):

I would have gone further than 12, if the presumed length of
the calculations did not frighten me off. I observed that there must
inevitably be some method, much more abridged, in order to attain
the same end in all cases.

Substituting a for x and expanding, formula (5) becomes [85]

1

ω

∫
Fda = ∆−1v +Av +B∆v + C∆2v + . . .+K, (25)

where the coefficients

A =
1

2
, B = − 1

12
, C =

1

24
, D = − 19

720
, E =

3

160
, F = − 863

60480
, . . . ,

are those of the identity33(
1− 1

2
ω +

1

3
ω2 − . . .

)−1

= 1 +Aω +Bω2 + Cω3 + . . . .

It is also easy to see that they are linked together by the following rule: A,
B, C, . . . , L, M , N, being respectively the first, second, third . . . , (n − 2)th,
(n− 1)th, nth coefficients, we have

N =
1

n+ 1
− 1

2
M − 1

3
L− . . .− 1

n− 2
C − 1

n− 1
B − 1

n
A, (26)

a formula in which we only pay attention to the absolute values of the numbers
A, B, C, . . . , L, M , N ; giving them their alternative signs + and − afterward.

33In [Servois 1817], the left-hand side of the equation was given as
(
2− 1

2
ω + 1

3
ω2 − . . .

)−1
.
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Memoir on Quadratures 12

As above, let us make ω = 1, then substitute a+n for a in (25), and subtract
(25) from the result. We will have

Z = (En − 1)
(
∆−1 +A+B∆+ . . .

)
v = ∆−1 (En − 1)

(
1 +A∆+B∆2 + . . .

)
v.

Now, according to the theorem of differences,

∆−1 (En − 1) = ∆n−1 +
n

1
∆n−2 +

n

1

n− 1

2
∆n−3 + . . .+ n,

therefore

Z =

(
∆n−1 +

n

1
∆n−2 +

n

1

n− 1

2
∆n−3 + . . .+ n

)
(
1 +A∆+B∆2 + . . .+M∆n−1 +N∆n

)
v.

Expanding this and rejecting all the differences greater than those of order n,
we find an equation of the form

Z = α∆nv + β∆n−1v + γ∆n−2v + δ∆n−3v + . . . , (27)

in which it will be necessary to make [86]

α = A+ B n
1+ C n

1 · n−1
2 + . . .+Nn,

β = 1+ An
1+ B n

1 · n−1
2 + . . .+Mn,

γ = n
1+ An

1 · n−1
2 + . . .+ Ln,

δ = + n
1 · n−1

2 + . . .+Kn,

. . . . . . . . .


(28)

an expression of which the rule is clear.
It may be noted here that the series (27), with its coefficients (28), is fun-

damentally the same as a formula given by Lorgna34 in the Mèmoires de la
sociètè italienne (Vol. I).

It remains to expand the differences in (27) into varied states, following
formula (24). We finally obtain

Z = aEnv + bEn−1v + cEn−2v + dEn−3v + . . . , (29)

an equation in which we must make

a = α,

b = β − n
1α,

c = γ − n−1
1 β + n

1 · n−1
2 α,

d = δ − n−2
1 γ + n−1

1 · n−2
2 β − n

1 · n−1
2 · n−2

3 α,

. . . . . . .


(30)

34Antonio Maria Lorgna (1735–1796).
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Memoir on Quadratures 13

[87] We see that if we had a large number of coefficients A,B,C, . . . in a table,
whose values are independent of the number n, and that are easily calculated,
using formula (26), we would quickly obtain the coefficients a, b, c, . . . (29), by
means of formulas (28, 30), in which all the coefficients depending on n can be
taken from a table of figurate numbers.35 Furthermore, we know that we really
only need to calculate half, or the simple majority (if n is odd), of the numbers
of these coefficients, because as in the preceding, the origin of the coordinates
was placed at the foot of the ordinate v, and we considered Ev,E2v,E3v, . . .
as situated in the region of positive coordinates. However, if we transpose the
origin to the foot of y, and we take as positive ordinates those that get succes-
sively further in approaching v, which is essentially the same, the differences,
and consequently the area Z, which remains the same, will be expressed by y,
E−1y,E−2y, . . . and n, as they had previously been expressed by v, Ev,E2v, . . .
and n. Therefore, the coefficients of the ordinates (v,Env) ,

(
Ev,En−1v

)
, . . .,

that is to say, the ordinates equally distant from the extremes are equal. Fur-
thermore, we will give other formulas below for immediately calculating the
coefficients of equidistant ordinates in the final expression of Z.

V. Another method is founded on the observation that, in the series expres-
sions of Z, as with those of the varied states, the differences and differentials
appear linearly and in the same way, and relate exclusively to the limits of the
area. The method consists of eliminating these differences or differentials among
several expressions for the same area, where we vary the number of intermediate
coordinates, or else between expressions of an area with equidistant coordinates.
This elimination, among equations of the first degree in several unknowns and
executed by known procedures, will only introduce terms that are linear in the
terms of the equation that is used into the final equation.

[88] I explain myself with a first example. To abbreviate, I put the series
(10) in the form

Z = T + αω2 + βω4 + γω6 + . . . . (31)

Preserving the limits v and y of the integral Z, if I let ω vary so that we have
respectively T ′, T ′′, . . . in place of T , as ω becomes ω′, ω′′, . . ., then I will have
(31)

Z = T ′ + αω′2 + βω′4 + γω′6 + . . . ,

Z = T ′′ + αω′′2 + βω′′4 + γω′′6 + . . . ,

. . . . . . . . . . . . ,

in which the coefficients α, β, γ, . . ., which depend only on the limits, remain the
same as in (31). From these equations, assumed to be n in number, I determine
the same number n of coefficients of the sequence α, β, γ, . . .. I substitute these
in (31) and take as zero the ones I have not determined, and I have for Z an
approximation that is equivalent to that which would result from the hypothesis
that the difference ∆2n+1 is zero, as well as those of the higher orders, because

35Specifically, binomial coefficients.

Robert E. Bradley and Salvatore J. Petrilli, Jr.
Appendix to “Servois’ 1817 Mermoir on Quadratures”
MAA Convergence (May 2019)



Memoir on Quadratures 14

the first term neglected in (31) is that of order n + 1, counting the terms that
belong to T exclusively. Now, this term is of the form36

Qω2(n+1)

{
d2n+1y

dx2n+1
− d2n+1v

da2n+1

}
,

which we recognize by a simple inspection of the series (10).
If the interval x−a is divided into 2n equal parts, for example, with the same

ordinates that were used to compose T , we may form a certain number of areas
T ′, T ′′, . . . divided in a different manner, by taking for ω′, ω′′, . . ., respectively,
the multiples n′ω, n′′ω, . . ., where n′, n′′, . . . denote the divisors of 2n. If the
number 2n has n divisors, we will form, simply by means of the ordinates [89]
that make up T a number n of other areas T ′, T ′′, . . ., and consequently we will
bring the approximation up to the differences of the order 2n, inclusively. If the
number of divisors n′, n′′, . . . is less than n we may still, with the ordinates of
T , form a certain number of auxiliary areas that will give an approximation of
lower order.

Those who know the method of integration of Mr. Dobenheim published
in the Ballistics (Strasbourg 1816), a method Mr. Kramp presented, with
important developments due entirely to him (Annales, Vol. VI, p. 281ff.), will
no doubt find that they coincide with the procedure which I have just sketched
out.

As a second example, I apply the method to the series (21). Taking ω to be
unity, and rejecting differences of order n+1 and higher, by Taylor’s Theorem,
we have, without difficulty37

Env + E−nv = 2v + 2 n2

1·2
d2v
da2 + 2 n4

1·2·3·4
d4v
da4 + . . .+ 2 n2n

1·2···2n
d2nv
da2n ,

En−1v + E−(n−1)v = 2v + 2 (n−1)2

1·2
d2v
da2 + 2 (n−1)4

1·2·3·4
d4v
da4 + . . .+ 2 (n−1)2n

1·2···2n
d2nv
da2n ,

. . . . . . . . . . . . . . .

E2v + E−2v = 2v + 2 22

1·2
d2v
da2 + 2 24

1·2·3·4
d4v
da4 + . . .+ 2 22n

1·2···2n
d2nv
da2n ,

Ev + E−1v = 2v + 2 1
1·2

d2v
da2 + 2 1

1·2·3·4
d4v
da4 + . . .+ 2 1

1·2···2n
d2nv
da2n ,

v = v.


(32)

These equations, n + 1 in number, multiplied respectively by [90] the indeter-
minate coefficients α, β, γ, . . ., then added up, give the following, denoting by V
the sum of their left-hand sides:

V =


2
1v

(
α+ β + γ + . . .+ µ+ 1

2ν
)

+ 2
1·2

d2v
da2

[
αn2 + β(n− 1)2 + γ(n− 2)2 + . . .+ µ

]
+ 2

1·2·3·4
d4v
da4

[
αn4 + β(n− 1)4 + γ(n− 2)4 + . . .+ µ

]
+ . . . . . . . . . . . . . . .


36In [Servois 1817], the denominator of the second term was given as dx2n+2.
37In [Servois 1817], the last term of the first line was given as 2 n2n

1·2···2n
da2n

d2nv
.
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Memoir on Quadratures 15

I determine the coefficients α, β, . . ., by making V coincide with W (21),
term by term. This provides the n+ 1 conditions

α+ β + γ + . . .+ µ+ 1
2ν = n,

αn2 + β(n− 1)2 + γ(n− 2)2 + . . .+ µ = n3

3 ,

αn4 + β(n− 1)4 + γ(n− 2)4 + . . .+ µ = n5

5 ,

. . . . . . . . . . . . . . .

αn2n + β(n− 1)2n + γ(n− 2)2n + . . .+ µ = n2n+1

2n+1 ,


(33)

in the same number as the coefficients, and therefore sufficient to determine
them. After which, I will have

W = V = α
(
Env + E−nv

)
+β

(
En−1v + E−(n−1)v

)
+ . . . µ

(
Ev + E−1v

)
+νv.

(34)
This process conforms perfectly with that of the method given by Mr.

Bérard (Annales, vol. VII, p. 101 and following). [91] Indeed, suppose n = 12,
in the table of equations (33), and you will have identically the thirteen equa-
tions relative to this case, given on page 108 of the cited volume. There is,
moreover, no resemblance between the metaphysics of the learned author and
that which brought us here; however, that is not what we are concerned with
at the present.

We must point out that the equations (33) possess a particular method
of very expeditious solution, which even allows us to arrive at simple enough
formulas for expressing the coefficients α, β, γ, . . ..

We eliminate α from the equations (33) by subtracting from each one of the
first n, multiplied by n2, the one that immediately follows it. Now, this clearly
amounts to multiplying, term by term, and in order, the left-hand sides of the
first n equations, respectively, by the sequence

n2−n2 = 0, n2− (n−1)2 = b, n2− (n−2)2 = c, n2− (n−3)2 = d, . . . , n2−1, n2,

then giving to each result, on the right-hand side, that of the corresponding
equation, multiplied by n2, and then diminished by the right-hand side of the
equation immediately following it. We thus obtain the n equations without α:

bβ + cγ + dδ + . . .+ n2ν
2 = n3p,

bβ(n− 1)2 + cγ(n− 2)2 + dδ(n− 3)2 + . . . = n5p′,

bβ(n− 1)4 + cγ(n− 2)4 + dδ(n− 3)4 + . . . = n7p′′,

. . . . . . . . . . . . . . . ,

 (35)

where we have

p =
2

1 · 3
, p′ =

2

3 · 5
, p′′ =

2

5 · 7
, p′′′ =

2

7 · 9
, . . . ;

these coefficients being independent of n.
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[92] Now, it is clear that in the left-hand sides of the equations in table (35),
(n−1)2 plays the same role as n2 in equations (33). Thus, we will form a second
table of n−1 equations without β by multiplying the left-hand sides of the first
n− 1 equations (35), term by term and in order, by the sequence

(n− 1)2 − (n− 1)2 = 0,(n− 1)2 − (n− 2)2 = c′, (n− 1)2 − (n− 3)2 = d′,

. . . ,(n− 1)2 − 1, (n− 1)2,

and taking for the right-hand side of each its original, multiplied by (n − 1)2,
and then diminished by the one that follows it. In this way we have,

cc′γ + dd′δ + . . .+ n2(n−12)ν
2 = n3q,

cc′γ(n− 2)2 + dd′δ(n− 3)2 + . . . = n5q′,

cc′γ(n− 2)4 + dd′δ(n− 3)4 + . . . = n7q′′,

. . . . . . . . . . . . . . . ,

 (36)

where we have

q = (n− 1)2p− n2p′, q′ = (n− 1)2p′ − n2p′′, q′′ = (n− 1)2p′′ − n2p′′′, . . . .

Here (n − 2)2 has taken the place of (n − 1)2 in (35), and of n2 in (33).
Additionally, one notices, without it being necessary to insist on it, how one
will pass to a sequence of tables of n − 2, n − 3, . . . equations each comprising
one fewer unknown; and finally how one will arrive at a single equation of the
form

n2(n− 1)2(n− 2)2 · · · 22 · 1
2

ν = n3w,

which immediately gives

ν =
2n3w

n2(n− 1)2(n− 2)2 · · · 22 · 1
.

[93] Afterward we shall go back to using only the first equation of each
table (which will be all the more simple since this way we will have dispensed
with writing the left-hand sides the other equations) to determine the other
coefficients, in the order µ, λ, . . . , γ, β, α.

The extreme simplicity of this permitted me to give in to my curiosity, in
researching whether the formula of Mr. Bérard, relating to the case of 2n = 12,
deserves the reproach of being false that was addressed to him (Annales, vol.
VII, p. 245).38 In this hypothesis n = 6, and the first equations of the successive

38Bérard was the principal of the College at Briançon. Kramp stated that Bérard had the
wrong numerical coefficients in this case.
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tables are

α+ β + γ + δ + ϵ+ ζ + η = 6,

11β + 20γ + 27δ + 32ϵ+ 35ζ + 18η = 216p,

180γ + 432δ + 672ϵ+ 840ζ + 450η = 216q,

3024δ + 8064ϵ+ 12600ζ + 7200η = 216r,

40320ϵ+ 10080ζ + 64800η = 216s,

30240ζ + 259200η = 216t,

259200η = 216u.


(37)

We then obtain p, q, r, . . . by means of39

q = 25p− 36p′ = 2·89
1·5·3 , q′ = 25p′ − 36p′′ = 2·67

3·5·7 ,
r = 16q − 36q′ = 2·7556

1·3·5·7 , r′ = 16q′ − 36q′′ = 2·4788
3·5·7·9 ,

s = 9r − 36r′ = 2·439668
1·3·5·7·9 , s′ = 9r′ − 36r′′ = 2·65772

3·5·7·9·11 ,
t = 4s− 36s′ = 2·16977600

1·3·5·7·9·11 , t′ = 4s′ − 36s′′ = 2·43758144
3·5·7·9·11·13 ,

u = t− 36t′ = − 2·1354584384
1·3·5·7·9·11·13 ,

[94]

q′′ = 25p′′ − 36p′′′ = 2·45
5·7·9 , q′′′ = 25p′′′ − 36pIV = 2·23

7·9·11 ,
r′′ = 16q′′ − 36q′′′ = 2·3780

5·7·9·11 , r′′′ = 16q′′′ − 36qIV = 2·4532
7·9·11·13 ,

s′′ = 9r′′ − 36r′′′ = − 2·373500
5·7·9·11·13 ,

qIV = 25pIV − 36pV =
2 · 1

9 · 11 · 33 .

The value of u, introduced in the last of equations (37) immediately gives

η = −1354584384

81081000
.

Here we have taken ω as unity or the 12th part of the interval between the
extreme ordinates. If, with Mr. Bérard, we take the entire interval as unity, we
must divide our coefficients by 12. Now, after having divided the previous value
of η by 12, and dividing the top and bottom of the fraction by 21, to express
the fraction in a simpler form, I find40

η = −87797136

63063000
,

which is precisely the expression of the same coefficient, in the formula of Mr.
Bérard. The other coefficients ζ, ϵ, . . . obtained by computation with equations

39In [Servois 1817], the value of q was given as 2·84
1·5·3 .

40This second value of η can be found by dividing the numerator of the previous value by
12, then multiplying top and bottom by 7

9
.
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(37), then divided by 12, also coincide with those in the formulas cited, which
is thereby fully justified.

It may not be necessary to observe that the method of which this article is
concerned clearly applies, of course, in the same way, to the series (22) which
also includes the cases of the interval divided into an odd number or an even
number of parts. From this it follows that it is not true to say that Mr. Bérard’s
method is only immediately applicable to an even divisor (Annales, vol. VII, p.
245).41

VI. [95] Convinced that the formula for the divisor 12, given by Mr. Bérard,
is true, must we then pronounce that Mr. Kramp’s formula (Annales, vol. VI,
p. 377), which differs from it is false? The reply based on the principles of Mr.
Kramp himself (vol. VII, p. 245) is affirmative. Moreover, the two methods
give the same results for the divisors42 1, 2, 3, 4, 5, 6, 7, 8. Thus, if it was only
that they began to diverge at the divisor 8 that would be very extraordinary.
Consequently, my esteemed friend, the Editor of the Annales, thinks that

We can conclude nothing for or against the formulas of Messrs.
Kramp and Bérard from the differences they present in the applica-
tions (Ibid, p. 246, in the first footnote).

It will be quite easy to decide the question, after the reconciliation that we are
about to make among these methods and another, which has long been available
to analysts. Here it is.

Let
y = v +Au+Bu2 + Cu3 + . . .+Nun, (38)

be the equation of a complete parabolic curve,43 of order n, passing through
the origin of the u’s at the vertex of the ordinate v. By requiring it to pass
through n other equally spaced ordinates Ev,E2v, . . . , Env in the interval be-
tween the limits u = 0 and u = n, we will have, for determining the n coefficients
A,B, . . . , N , the n equations derived from (38), [96]

Ev = v +A+B + . . .+N,

E2v = v + 2A+ 22B + . . .+ 2nN,

. . . . . . . . . . . . . . . ,

Env = v + nA+ n2B + . . .+ nnN.

 (39)

41See [Kramp 1816]. In paragraph five, Kramp states that Bérard’s method is only appli-
cable to even divisors and suggests that he might have been confused as to the modifications
needed to adapt his formulas to the odd case.

42The following footnote was given in [Servois 1817]: “There is indeed some difference with
respect to the divisor 8, because the common denominator of the coefficients, which are
otherwise the same in one and the other, is 28350 in Mr. Bérard’s paper and 89600 in Mr.
Kramp’s. However, it is probable that the difference is due to a typographical error in the
latter number, because the first one supports the proof of the hypothesis of the equality of
ordinates amongst each other and with unity.”

43As previously noted, a complete parabolic curve is any polynomial of degree n.
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We will then have the area of this curve, between the same limits, by integrating
(38) multiplied by du, from u = 0 to u = n. Additionally, if this area, which I
call Inscribed, or the Area inscribed in the parabolic curve, is taken instead as
the area Z of the actual curve, we will have

Z = nv +
An2

2
+

Bn3

3
+ . . .+

Nnn+1

n+ 1
. (40)

It is clear that we will arrive at the same result by eliminating the coefficients
A,B,C, . . . among the equations (39 and 40).

It is quite obvious that the system of equations (38, 39) can be replaced by
this system of equations:

y = v +
u

1
∆v +

u

1
· u− 1

2
∆2v + . . .+

u

1
· u− 1

2
· · · u− n+ 1

n
∆nv, (41)

∆v = Ev− v,∆2v = E2v− 2Ev+ v, . . . ,∆nv = Env−nEn−1v+ . . .± v, (42)

because, according to this system, by successively taking u = 0, u = 1, u = 2,
. . ., u = n in (41), you will successively find y = v, y = Ev, y = E2v, . . . y = Env,
as it should be. Now, equations (41, 42) being precisely those from which
Mr. Kramp eliminated the differences (IV), it is clear that the method of this
geometer coincides with that of this article, that is to say, he gives [97] the area
of the inscribed parabolic curve of degree n in place of the true area Z.

On the other hand, as demonstrated by Lagrange (Ecole normale, vol. IV),44

the parabolic equation that immediately satisfies conditions (38, 39) is as fol-
lows45

y = ± 1

1 · 2 · · ·n


v × (u− 1)(u− 2)(u− 3) . . . (u− n)
−nEv · u× (u− 2)(u− 3) . . . (u− n)
+n

1
n−1
2 E2v · u(u− 1)× (u− 3) . . . (u− n)

. . . . . . . . . . . .
±Env · u(u− 1)(u− 2) . . . (u− n+ 1)

 (43)

where we must take the upper sign if n is even.
However, by denoting S1, S2, S3, . . . as the sum of the products 1 by 1, 2 by 2,

3 by 3, . . . , of the terms of the sequence 1, 2, 3, . . . , n, and by S1
1 , S

2
1 , S

3
1 , . . . these

sums of the products when we exclude the term 1; and in general S1
k, S

2
k, S

3
k, . . .

these same sums of products when we exclude the kth term, it is clear that
equation (43) becomes

y = ± 1

1 · 2 · · ·n


v
(
un − un−1S1 + un−2S2 − . . .± Sn

)
−n

1Ev
(
un − un−1S1

1 + un−2S2
1 − . . .∓ Sn−1

1

)
+n

1
n−1
2 E2v

(
un − un−1S1

2 + un−2S2
2 − . . .∓ Sn−1

2

)
. . . . . . . . . . . .
±Env

(
un − un−1S1

n + un−2S2
n − . . .∓ Sn−1

n

)

 (44)

44See [Lagrange 1795, p. 277].
45This is Lagrange’s Interpolating Polynomial for the points xk = k, when k = 0, 1, 2, . . . , n.
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[98] Multiplying this by du, then integrating between the limits u = 0 and u = n,
and giving the result for the area Z, we finally obtain

Z = ± 1

1 · 2 · · ·n



v
(

nn+1

n+1 − nn

n S1 + nn−1

n−1 S
2 − . . .± nSn

)
−nEv

(
nn+1

n+1 − nn

n S1
1 + nn−1

n−1 S
2
1 − . . .∓ n2

2 Sn−1
1

)
+n

1
n−1
2 E2v

(
nn+1

n+1 − nn

n S1
2 + nn−1

n−1 S
2
2 − . . .∓ n2

2 Sn−1
2

)
. . . . . . . . . . . .

±Env
(

nn+1

n+1 − nn

n S1
n + nn−1

n−1 S
2
n − . . .∓ n2

2 Sn−1
n

)
.


(45)

This (45) is the formula that we promised above (IV), which immediately
gives expressions, as functions of the number n, for the coefficients for equidis-
tant coordinates.

If we prolong the right-hand side of (38), up to the power 2n of u, which
represents the parabolic curve of degree 2n, we will express that this curve is
inscribed in the one whose area has been designated by W (21) by writing the
equations, n+ 1 in number,

Env + E−nv = 2v + 2Bn2 + 2Dn4 + . . . ,

En−1v + E−(n−1)v = 2v + 2B(n− 1)2 + 2D(n− 1)4 + . . . ,

. . . . . . . . . . . . . . .

Ev + E−1v = 2v + 2B + 2D + . . . ,

v = v.


(46)

If we then take the two particular areas, one between [99] 0 and +n, the other
between 0 and −n, and we add their absolute values, to have the parabolic area
inscribed between +n and −n, which area we finally take in place of the area
W , we will have

W = 2nv +
2n3

3
B +

2n5

5
D + . . . . (47)

Now, equations (45, 21) and (44, 32) will coincide respectively if we have

B =
1

1 · 2
d2v

da2
, D =

1

1 · 2 · 3 · 4
d4v

da4
, . . . .

Therefore, the result of the elimination of B,D, . . . in (44, 45) will be identical

with that of the elimination of the differentials 1
1·2

d2v
da2 ,

1
1·2·3·4

d4v
da4 , . . . between

equations (21, 32). Now, this final result is that of the method of Mr. Bérard.
Thus, it also gives for the approximated area that of the inscribed parabolic
curve.

We have the right to conclude, with all rigor, by virtue of the axiom: Quæ-
sunt eadem, etc.,46 that the methods of Messrs. Kramp and Bérard must, for
the same divisors, give the same results.

46Quæsunt eadem cum uno tertio sunt eadem inter se: If two terms agree with the same
third, they agree with each other.
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The parabolic curve (38) of degree n, inscribed in the given curve, whose
area between the limits v and Env is Z, has its own proper area Z ′, between
the same limits, expressed in the equidistant ordinates v,Ev, . . .; this is the
right-hand side of (45). However, if we immediately treat this parabolic area
Z ′ by the method of Mr. Dobenheim, we would not find a different result, as
long as we take a large enough number of otherwise divided areas T ′, T ′′, . . .
to eliminate the number n

2 of coefficients of the powers of ω that follow T in
formula (10), appropriate in this case. Now, it is [100] precisely this result that
the method in question gives, in place of the area Z. Thus, the method of Mr.
Dobenheim also takes again the area of the inscribed parabolic curve in place
of the true area and thus ends the kind of astonishment that it first inspired by
presenting, as an approximation for the area of a curve, a linear combination
of equidistant ordinates, different from the one that makes up T , or the sum of
inscribed trapezoids. This is because nothing keeps the ordinates, which when
combined in one way gives the area of the inscribed rectilinear polygon, from
giving the area of the inscribed parabola when combined in another way. We
also see that these results must concur with those of the other two methods
when for n, the divisor of the interval, there is a number n

2 of exact divisors
n′, n′′, . . ., and these are used to compose as many auxiliary areas T ′, T ′′, . . ..
Thus, for example, because n = 6 has divisors 1, 2, 3, and 6, we have, besides
the area T which corresponds to 1, three other areas T ′, T ′′, T ′′′, corresponding
to the other divisors 2, 3, and 6, and we conclude that the given method, in
this case, gives the same formula as the others (Compare: vol. VI, pp. 288 and
376).

VII. The method of approximation (V) may thus be reconciled in the same
spirit with that of the preceding article, that is to say, with the method of
parabolic curves, and I would have drawn this important conclusion earlier, if
I had not been afraid of being criticized for putting forward the proposition:
“only whole rational functions eventually give null differences,” from which the
above is an immediate corollary. We must now try to appreciate the merits of
this method of parabolic curves.

I would not say that it leaves nothing to be desired; I will not even conceal
that it is under the weight of a very severe censure, recently pronounced by a
judge whom we are not tempted to challenge. [101]

I consider above all as one of the most defective (methods of
approximation), that which supposes that the ordinate of the curve
is represented in all of its extent by the formula y = a+bx+cx2+. . .,
or by an equivalent formula, because, although this curve can pass
through a great number of points of a given curve, it does not follow
that the two curves are very close to one another. On the contrary,
it may happen that the two areas, in spite of all the common points,
may be as different from one another as one may wish. (Exercices
de calcul integral, part III, p. 316).47

47See [Legendre 1811].
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Effectively, between the assigned limits, let the proposed curve be cut in n points
by a parabolic curve, in the equation of which (38) you will admit an additional
indeterminate coefficient, which will give in (39 and 40), one more term and one
more coefficient. Then, determine the n+ 1 coefficients, by means of equations
(39 and 40), making Z, in the latter, equal to a given quantity. In this way we
will have, between the assigned limits, a parabolic curve of degree n+ 1 which,
with n points in common to the given curve, nevertheless has an arbitrary given
area, and consequently also an area as different from the area of the proposed
curve as we may desire.

However, if between these assigned limits the proposed curve has no singular
features, such as multiple branches, infinite branches, conjugate points, cusps,
etc., or, if speaking analytically, between these limits, none of the differentials
dFx, d2Fx, . . . becomes infinite, in a word if the Taylor series may express its
ordinates throughout the whole interval — and such is the generally accepted
hypothesis — we understand that the more points there are in common between
the proposed curve and a parabolic curve of a degree equal to the number of
such points, the more the area of this second curve approaches identity with the
area of the first one. It is not superfluous to confirm this perception through
analytic considerations.

Let’s consider a complete parabolic curve of degree n, passing [102] through
n + 1 points of the given curve between the limits 0 and n. It will have as its
equation our formula (44), which we will put in the form

y = U,

U being a whole rational function of u comprising the right-hand side of (44).
When u receives any increment α, we will have48

Eαy = U +
α

1

dU

du
+

α2

1 · 2
d2U

du2
+ . . .+ U ′.

Now, when we make u equal to one of the numbers of the sequence 1, 2, 3,
. . . , n–setting u equal to 4, for example–then U becomes E4v. Additionally,
when one augments u by a unit, Eαy becomes Ey, and, in our example, equal
to E5v. The function U ′ moreover, has only a finite number of terms, because,
given that U is a whole rational function of u, its differentials will eventually
vanish. I say that the function U ′ is such that it is null for α = 0, and for
α = 1, it is equal to E5v − E4v, a quantity which is evidently smaller as the
neighboring ordinates approach one another, which is our hypothesis concerning
the given curve. Therefore, for any value of α, between 0 and 1, the function
U ′ will be very small, because it is a finite rational function of α. Thus, in the
interval between two consecutive ordinates of the given curve, the ordinates on
the parabolic curve differ very little from one another and from their limits.
Finally, because this is the hypothesis relative to the ordinates of the given
curve, the corresponding areas in both curves must also differ by very little.

48In [Servois 1817], the following formula was given as Eαy = U+α
1

dU
du

+ α2

1·2
d2U
du2 +. . . U+U ′.
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Perhaps I am mistaken, but I dare say that the method of parabolic curves
seems to me generally preferable to the direct method (I, II), which consists of
taking a certain number of terms of the series (11, 14, etc.) as an approximation,
because, without mentioning the difficulties and lengths in which the latter [103]
engages, for each particular case, there is trouble which we can apprehend by
imagining that we are forced to numerically calculate several successive orders of
the differentials, which can often be very complicated. It is entirely impossible
when it encounters divergent series, or even series which are very slightly conver-
gent. On the other hand the first method, after a brief examination, necessary
to recognize its implementation, brings one to a very close approximation, by
very simple calculation, a good part of which is entirely contained in tables.

I take a very simple example–the research on the logarithm of 2–which is
the first example that is proposed by Mr. Kramp (Annales, vol. VI, p. 288),
and we know that the parabolic method applies to it with great ease.

I therefore make y = Fx = 1
x , from which49 Z =

∫
Fxdx

{
x
a

}
= log

(
x
a

)
,

and to get Z = log 2, I suppose ω = 1, a = 6, and x = 12. The sequence of the
differentials of the function Fx is50

dFx

dx
= − 1

x2
,

d2Fx

dx2
= +

2

x3
,

d3Fx

dx3
= − 6

x4
, . . . .

According to these formulas, the series (19, 20, 22), give, without difficulty,51

log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− . . . ,

log 2 =
1

2
+

1

2 · 22
+

1

3 · 23
+

1

4 · 24
+ . . . ,

log 2 =
2

3

(
1 +

1

3 · 32
+

1

5 · 34
+

1

7 · 36
+ . . .

)
.

Of these three series, the first is useless, seeing that it is not sufficiently conver-
gent. The second is not much better. [104] The third may absolutely be used.
However, to obtain a result of the same precision, the parabolic procedure of
methods (IV, V), aided by the formulas calculated in the Annales, etc., seems
to me easier. Let us see what series (10) gives. Because

T =
1

2 · 6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

11
+

1

2 · 12
= 0.694877346,

I have

log 2 = 0.694877346−B1
22 − 1

122
+B2

24 − 1

124
−B3

26 − 1

126
+ . . . .

49In the notation
∫
Fxdx

{
x
a

}
, the numbers in the curly braces represent the limits of

integration. In modern days, we would write
∫ x
a F (t) dt.

50In [Servois 1817], the following sequence was given as

dFx

dx
= −

1

x2
,

d2Fx

dx2
= +

1

x3
,
d3Fx

dx3
= −

1

x4
, . . . .

51In (19, 20, 22), we have n = 6, v = 1
6
, y = 1

12
, and E

1
2
nv = F (a+ 3ω) = 1

9
.
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To assure myself of the convergence of this series, which contains the Bernoulli
numbers, I equate the absolute value of two terms of orders n and n+ 1, from
which I conclude

Bn+1

Bn
=

(
22n − 1

)
122

22(n+1) − 1
.

Now, Euler, in his Calcul différentiel,52 demonstrated that the ratio of two

consecutive Bernoulli numbers converges fairly quickly to the expression n2

π2 . We
can therefore write

n2

π2
=

144
(
22n − 1

)
22(n+1) − 1

,

where we conclude n is approximately equal to 6π, or about 18. That is to say,
the series becomes divergent after the first 18 terms. It is therefore absolutely
divergent, because if you combined the first 18 terms to form a single first term,
then you would have an entirely divergent series, which by itself will teach us
nothing about the value of log 2, at least in the current state of analysis.

[105] However, one might say, the series in question is of the semi-convergent
class: those that provide successive approximations, as long as one does not
exceed the limit of decreasing terms. I find, to support this proposition, only a
feeble induction, whereas a good demonstration is needed. It will be said, the
first term of a divergent series is, in general, an approximation. Whatever this
may be, at least it is certain that it is often far away from the exact value, and
that nothing in the series can help to judge the degree of approximation. Thus,
in our example, it is not from the series, but elsewhere, that I know that the
first term 0.694877364 is an approximate value of log 2. We can even calculate,
it will be added, the approximation that a semi-convergent series can give: we
calculate the degree of smallness of the term which is at the beginning of the
divergence. So be it, but I do not know that we can demonstrate a priori that
this is the measure of the approximation that the series infallibly produces: This
property itself of giving an approximation whose term is calculable would be a
paradox that no induction could admit.

The series53

1− 2

3
− 2

9
− 4

27
− 10

81
− 28

243
− 28

243
− 88

729
− . . . ,

is convergent up to the sixth term and is divergent beyond that; it is conse-
quently semi-convergent. Now, this series, multiplied by

√
3, is nothing other

than the expansion of
√
3− 4 or

√
−1. Thus, as with absolutely divergent series,

the semi-convergent series may express imaginary quantities; this never happens
for convergent series. From this, it seems to follow that the first two should be
united in one and the same single class, as the semi-divergent belong with the
convergent.

52See [Euler 1755].
53In [Servois 1817], the following series was (incorrectly) given as 1 − 2

3
− 2

9
− 4

27
− 10

81
−

28
243

− 88
729

− . . .. This is the binomial series for
(
1− 4

3

) 1
2 .
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D’Alembert and Condorcet,54 who engaged themselves so much with series,
did not accept these equivocal beings called semi-convergent series. The latter
said:

It is necessary that the sequence given by the [106] method of
approximation, must be capable to continue to infinity, without hav-
ing to stop at any term, and change its form or nature at that point;
and that the more terms we take. . . the less the sum of the sequence
differs. . . ; and it must be not only that this holds, but moreover that
it has been proved a priori. (Problème des trois corps, p. 62).55

Lagrange expresses himself in perhaps a more positive manner in this regard.
After having spoken about the way to evaluate the omitted terms at the end of
the Taylor series, he adds:

By the means of these limits, we have covered the difficulties
that may arise from the non-convergence of the series [the value of
(x+ i)

m
] . . . if i

x < 1 . . . the series will always end up being conver-

gent. However, it will always be divergent at its extremity, if i
x > 1,

even though it may be convergent in its first terms. Thus, it can-
not be used with certainty, however far it may be taken, except by
taking into account the limits that we have just given. (Journal de
l’école polytechnique, book XII,56 p. 75).57

54Marie Jean Antoine Nicolas de Caritat Condorcet (1743-1794).
55See [Condorcet 1767].
56Published in 1804.
57The following footnote, inserted by Gergonne, appeared in [Servois 1817]: “While I ba-

sically share the opinion of my judicious friend, I nevertheless believe that I must temper it
slightly.

First of all, I note with him, that as we may always join as many of the first terms as we
may wish of a semi-convergent series into a single term by addition, it follows that the series
in this class may always be classified in the class of purely divergent series.

In the second place, I note that such series may always be put into an infinity of different
forms. In fact, we may combine their terms two by two, or three by three, four by four, and
so on. We may also leave the first term alone, join the two following, then the three that come
after these, the four that come next, and so on. We may finally form the terms of this series
by any other regular combination that we may wish.

Now, if all the terms of the series are not of the same sign, or are not always so starting at
a certain term, we may imagine that among the new series that we may have deduced, it may
well be that we find some that are convergent, and even that we may prove that they must
remain so after a certain term. Now, given that the latter may have an assignable sum, those
that we have deduced from them must equally be so.

Among the examples that we may produce in support of these reflections, one of the simplest
is undoubtedly that of the divergent series

0

1
−

1

2
+

2

3
−

3

4
+

4

5
−

5

6
+

6

7
− . . . . (A)

In combining its terms two by two, it becomes

−
1

1 · 2
−

1

3 · 4
−

1

5 · 6
−

1

7 · 8
−

1

9 · 10
−

1

11 · 12
− . . . , (B)

a perpetually convergent series, whose rule is manifest, and which may consequently be used
with all certainty of conscience, as a means of approximation. Now, the first is the expansion
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VIII. [107] Until some fortunate discovery has taught us to turn convergent
those series that are very little so or not at all, that is to make use of divergent
series, the parabolic method remains the resource of the calculating mathemati-
cian, and it is [108] consequently this method that we must endeavor to perfect.
The parabolic area incontestably approaches closer to the true area if, in addi-
tion to the number n of common points, the two curves always have, at these
points, more or less intimate contacts. Now, it is always possible to satisfy this
new condition when we have the equation of the proposed curve. Indeed, in dif-
ferentiating equation (38), which is therefore no longer terminated at the term
Nun, we find

dy

dx
= A+ 2Bu+ 3Cu2 + . . .

d2y

dx2
= 2B + 2 · 3Cu+ 3 · 4Du2 + . . .

d3y

dx3
= 2 · 3C + 2 · 3 · 4Du+ 3 · 4 · 5Eu3 + . . . .

These are as many formulas that give the differential coefficients at the vertices
of each of the ordinates v,Ev,E2v, . . ., by successively making u = 0, u = 1, u =
2, . . .. In order to clarify these ideas, suppose we wish that the parabolic curve
is to have, at the points in common with the proposed curve, contacts of the
first-order, or common tangents. To abbreviate, we use the letters α, β, . . . , µ, ν,
alone or marked with accents to represent the n + 1 equidistant ordinates and
their successive differential coefficients, respectively. Noting that α = v and
that α′ = A, we have the equations [109]

β = α+ α′ +B + C + . . .

γ = α+ 2α′ + 22B + 23C + . . .

. . . . . . . . . . . . . . .

ν = α+ nα′ + n2B + n3C + . . . .

 (48)

of 1
2
− log 2, because we have

1

2
= 1− 1 + 1− 1 + 1− 1 + . . . ,

log 2 = 1−
1

2
+

1

3
−

1

4
+

1

5
−

1

7
+ . . . ,

which, in fact gives,
1

2
− log 2 =

0

1
−

1

2
+

2

3
−

1

4
+

4

5
−

5

6
+ . . . .

From this it follows that the divergent series (A) may, like the convergent series (B), be used
an an approximation to 1

2
− log 2.

However, along with Mr. Servois, I also reject, as an instrument of approximation, any
series that are divergent, or even semi-convergent, the terms of which are all of the same sign,
or become of the same sign starting from any one of its terms, as well as every divergent or
semi-convergent series, always having terms that are both positive and negative, but of which
we cannot prove that, by some transformation, it can be reduced to a truly convergent series,
whether immediately or from any of its terms. J.D.G.”
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β′ = α′ + 2B + 3C + . . .

γ′ = α′ + 2 · 2B + 3 · 22C + . . .

. . . . . . . . . . . . . . .

ν′ = α′ + 2nB + 3n2C + . . . .

 (49)

The first ones (48), are the same as (39), expressing the equality of the n points.
The latter ones (49) express the equality of the n tangents. To find the area Z
we must combine them with the equation

Z = nα+
1

2
n2α′ +

1

3
n3B +

1

4
n4C + . . . . (50)

The equations (48, 49), separately n in number, together 2n in number, will
determine the 2n coefficients B,C, . . ., that is to say, the 2n coefficients following
A, so that the last term of (38) will be of order u2n+1. Thus, we may always
make a parabolic curve of order 2n+1 pass through n points of the given curve
with common tangents at these points. If we wished the parabolic curve had
both first and second order contacts at the same time, that is to say, common
tangents and radii of curvature, we must join the following equations to the
equations (48, 49), also n in number,

β′′ = α′′ + 2 · 3C +3 · 4D + . . .

γ′′ = α′′ + 2 · 3 · 2C +3 · 4 · 22D + . . .

. . . . . . . . . . . . . . .

ν′′ = α′′ + 2 · 3 · nC +3 · 4 · n2D + . . . .

By means of 3n equations, we will determine 3n coefficients [110] C,D, . . ., such
that (38) will rise to order 3n + 2, and so on. We see in general that we may
always determine a parabolic curve which, at the n points of intersection, has
the m contacts of successive orders all at the same time, and that this curve
will be of the order mn+m− 1.

Suppose, to give an example, that having divided the interval between the
limits in n = 3 equal parts, we wish to make a parabolic curve pass through
the vertices of the four ordinates α, β, γ, and δ, and in addition to these points
the two curves have common tangents. I take the first three equations of (48,
49) as far as the coefficient G, inclusive. By means of these, I determine the six
coefficients B,C,D,E, F,G. I substitute into (50) and I finally find

Z =
465 (α+ δ) + 1215 (β + γ) + 57 (α′ − δ′)− 81 (β′ − γ′)

1120
. (51)

Let us apply this formula to the logarithm of 2. Because the interval is
divided into three units, we must make a = 3 and58 x = 6, to have Z = log 2.
Given this, we have

α =
1

3
, β =

1

4
, γ =

1

5
, δ =

1

6
,

58In [Servois 1817], this was given as n = 6.
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α′ = −1

9
, β′ = − 1

16
, γ′ = − 1

25
, δ′ = − 1

36
,

from which

α+ δ =
1

2
, β + γ =

9

20
, α′ − δ′ = − 1

12
, β′ − γ′ = − 9

400
,

values which, when substituted in (51), give

log 2 = 0.693145 . . . ,

the exact expression to the fifth decimal place, inclusive.
Formula (51) is easily verified in another way, by making [111]

α = β = γ = δ = 1 and α′ = β′ = γ′ = δ′ = 0.

This is of course a line parallel to the x-axis at a distance of 1. Thus, one must
have Z = 3. Another verification is to make

α = 0, β = 1, γ = 2, δ = 3 and α′ = β′ = γ′ = δ′ = 1.

This is the case of a straight line passing through the origin, and inclined to the

x-axis by half a right angle. Thus, we must have Z = 32

2 .
It should be noted that the form in which equation (51) is presented is not

accidental, and, we shall see why, in general, by combining the differential coeffi-
cients of the same order two by two in the final expression of the area, following
the summary account of the procedure that I recommended be followed by those
who wish to construct tables, according to the ideas set out in this article. This
procedure is entirely similar to that which we have applied to the series (21), and

consists in eliminating from this series the differential coefficients d2v
da2 ,

d4v
da4 , . . .,

not only by means of equations (32), but by means of those equations joined
with the entirely similar equations that exist among the successive differential
coefficients of the ordinates v,Ev, . . . . Thus, for formulas of the different sys-
tems of equations to be used, we have, using the simple letters α, β, . . ., in place
of the differential quotients [112]59

Env + E−nv = 2v + 2n2α+ 2n4β + . . .

dEnv

da
− dE−nv

da
= . . . 2 · 2n2α+ 4 · 2n3β + . . .

d2Env

da2
− d2E−nv

da2
= . . . 2 · 2nα+ 3 · 4 · 2n2β + . . .

d3Env

da3
− d3E−nv

da3
= . . . 2 · 3 · 4 · 2nβ + . . .

d4Env

da4
− d4E−nv

da4
= . . . 1 · 2 · 3 · 4 · 2β + . . .

. . . . . . . . . . . . . . . .

59In [Servois 1817], the third equation was given as d2Env
da2 − d2E−nv

da2 = . . . 2 · 2α + 3 · 4 ·
2n2β + . . .. The ellipses following the equal sign presumably indicate a constant term of 0.
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The first of these formulas gives the n+ 1 equations (32): each of the following
ones gives as much. Multiplying the first system by A,B,C, . . ., the second by
A′, B′, C ′, . . ., the third by A′′, B′′, C ′′, . . ., and so on; and then adding them all,
and denoting by V the sum of the left-hand sides, we shall set W = V , and we
have, going up to the contact of order m, the number (m+1)(n+1) of equations
among as many coefficients, which once having been determined give us

W =


A (Env + E−nv) +B

(
En−1v + E−(n−1)v

)
+ . . .+Nv

+A′
(

dEnv−dE−nv
da

)
+B′

(
dEn−1v+dE−(n−1)v

da

)
+ . . .+N ′v dv

da

+A′′
(

d2Env−d2E−nv
da2

)
+B′′

(
d2En−1v+d2E−(n−1)v

da2

)
+ . . .+N ′′v d2v

da2

+ . . . . . . . . . . . . . . . . . . . . . . . . .


(52)

That is to say, in the final expression of the area W , the ordinates equally
distant from the extremities, as well as their successive differential coefficients,
are gathered together under the same numerical coefficient, but separated by
the + sign, for the differentials d0, d2, d4, . . . of even ranks, and by the − sign,
for the differentials d1, d3, d5, . . . of odd ranks.

IX. [113] Although the method of the preceding article expresses the area as
a function of equidistant ordinates and their successive differential coefficients,
it must not be confused with the method of the same features given by Euler in
his Calcul intègral (vol. I, sect. I, chap. VII).60 The latter clearly amounts to
dividing the total area into a number n of partial areas, having their bases a on
the x-axis, and taking the sum of these areas, evaluated separately, by the series
of Bernoulli. I shall not insist on proving that it is always practicable, and that
it may be sometimes quite advantageous to evaluate these partial areas using
the methods that we have just studied. I will equally abstain from making any
comparison between the results of the method of parabolic curves and those of
the methods which represent the order of the curve by functions of the abscissa,
whether by a finite rational fraction or a recurrent series derived from it, or by a
finite sequence of sines or cosines and their multiples at the abscissa, or a finite
series of exponentials, etc. I close with the following two general observations:

1. By Taylor’s Theorem, we are permitted, in general, to assume:

Fx = Fa+ α (x− a) + β (x− a)
2
+ γ (x− a)

3
+ . . . . (53)

If we know a certain number of the values Fx′, Fx′′, . . . of Fx, which correspond
to x′, x′′, . . ., or else a certain number of values of V, V ′, V ′′, . . ., which must
satisfy the equations

V = A+BFa+ αC + βD + . . . ,

V ′ = A′ +B′Fa+ αC ′ + βD′ + . . . ,

. . . . . . . . . . . . . . . ,

 (54)

in which the coefficients A,B, . . . and A′, B′, . . . are also [114] known, then
by eliminating a number n of coefficients α, β, . . ., between a number n + 1

60Institionum calculi integralis, Vol I., E342, 1768.

Robert E. Bradley and Salvatore J. Petrilli, Jr.
Appendix to “Servois’ 1817 Mermoir on Quadratures”
MAA Convergence (May 2019)



Memoir on Quadratures 30

of equations expressing, according to (52) or (53), an equal number of known
values Fx′, Fx′′, . . ., and V, V ′, . . ., we finally obtain an equation of the first
degree in Fa, from which we immediately obtain an expression of this function
in terms of known quantities, an expression which is an approximate value,
provided that the particular expansion deduced from (52 and 53) is possible.
This is, in general, the spirit of the method that has principally occupied us
in this memoir; from this it follows that it is applicable to many other things
besides quadratures.

2. Suppose it is possible to assume

Fn = ϕ+
α

n
+

β

n2
+

γ

n3
+ . . . , (55)

ϕ being what Fn becomes, when n is infinite. If we know the values of Fn
corresponding to the values n = 1, n = 2, n = 3, . . ., we have

F1 = ϕ+ α
1 + β

1 + γ
1 + . . . ,

F2 = ϕ+ α
2 + β

22 + γ
23 + . . . ,

F3 = ϕ+ α
3 + β

32 + γ
33 + . . . ,

. . . . . . . . . . . . . . . .


Among these, assumed to be n + 1 in number, we eliminate a number n of
coefficients α, β, γ, . . ., and we will have ϕ by an equation of the first degree that
can be used to express it in terms of F1, F2, F3, . . . and the different powers of
1
2 ,

1
3 ,

1
4 , . . ., by approximation, if the form (54) and equations that are derived

from it are possible.
[115] In (54), does Fn denote, for example, the perimeter or area of a regular

polygon of n sides inscribed in or circumscribed about a circle? The term ϕ will
be the perimeter or the area of that with an infinity of sides, or the circle itself,
and F1, F2, F3, . . . will be the polygons of 1, 2, 3, . . . sides. Does Fn represent
the sum of the n first terms of an infinite series? Then, ϕ will be the infinite
sum as long as F1, F2, F3, . . . are the sums of the same series carried out to
the 1st 2nd, 3rd, . . . terms. Is Fn the ordinate interpolated in a curve by means
of n other given ordinates? Then, ϕ will be the one that was interpolated by
means of an infinite number of given ordinates, that is to say, the incontestable
ordinate,61 as long as F1, F2, F3, . . . are the interpolations deduced from the
1, 2, 3, . . . assigned ordinates, and so on.

I have just referred back to, in substance, a very beautiful idea that the
Editor of the Annales published among several others of the same type in the
réflexions that he made following Mr. Kramp’s first memoir (Annales, vol. VI,
p. 303ff). I hasten to take this opportunity to recommend this small work of
my worthy friend to the attention of all geometers.

61This was given as l’ordonée rigoureuse, literally, the “rigorous ordinate.”
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[Bérard 1816] Bérard, J. B. 1816. “Méthode nouvelle pour quarrer les courbes,
et intégrer, entre des limites données, toute fonction différentielle d’une
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de différents problèmes de géométrie-pratique. Boston: Docent Press.

[Servois 1814a] Servois, F. J. (1814). “Essai sur un nouveau mode d’exposition
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