
A1 A grasshopper starts at the origin in the coordinate plane and makes a sequence of hops. Each

hop has length 5, and after each hop the grasshopper is at a point whose coordinates are both

integers; thus, there are 12 possible locations for the grasshopper after the first hop. What is

the smallest number of hops needed for the grasshopper to reach the point (2021, 2021)?

Answer: 578.

Solution: Each hop can be described by a displacement vector 〈p, q〉 with p2 + q2 = 25 ; the

twelve possible vectors are

〈3, 4〉; 〈−3, 4〉; 〈3,−4〉; 〈−3,−4〉; 〈4, 3〉; 〈−4, 3〉; 〈4,−3〉; 〈−4,−3〉; 〈5, 0〉; 〈−5, 0〉; 〈0, 5〉; 〈0,−5〉.

One way to write the total displacement as a sum of 578 of these vectors is

〈2021, 2021〉 = 288 · 〈3, 4〉+ 288 · 〈4, 3〉+ 〈0, 5〉+ 〈5, 0〉.

To show that it cannot be done with fewer, note that each hop can increase the sum of the

grasshopper’s coordinates by at most 3 + 4 = 7. Because this sum has to reach

2021 + 2021 = 4042 = 7 · (577) + 3 ,

at least 578 hops are needed.
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A2 For every positive real number x, let

g(x) = lim
r→0

(
(x+ 1)r+1 − xr+1

) 1
r .

Find lim
x→∞

g(x)

x
.

Answer: e.

Solution: Note that for r > −1 and any positive x, we have (x+ 1)r+1 − xr+1 > 0. Thus, by

the continuity of the logarithm,

log g(x) = lim
r→0

log
(

((x+ 1)r+1 − xr+1)
1
r

)
= lim
r→0

1

r
log
(
(x+ 1)r+1 − xr+1

)
.

Applying L’Hôpital’s rule, we get

log g(x) = lim
r→0

(x+ 1)r+1 log(x+ 1)− xr+1 log x

(x+ 1)r+1 − xr+1

=
(x+ 1) log(x+ 1)− x log x

(x+ 1)− x
= log

(
(x+ 1)x+1x−x

)
, so

g(x) = (x+ 1)x+1x−x = (x+ 1)

(
1 +

1

x

)x
.

Finally,

lim
x→∞

g(x)

x
= lim
x→∞

x+ 1

x

(
1 +

1

x

)x
= 1 · e = e.
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A3 Determine all positive integers N for which the sphere

x2 + y2 + z2 = N

has an inscribed regular tetrahedron whose vertices have integer coordinates.

Answer: A necessary and sufficient condition is that N be of the form N = 3m2, where m is

a positive integer.

Solution 1: To see that the condition is sufficient, note that the four points

(−m,−m,−m), (m,m,−m), (m,−m,m), (−m,m,m)

are the vertices of a regular tetrahedron inscribed in the sphere x2 + y2 + z2 = 3m2.

To show that the condition is necessary, we will use two lemmas:

Lemma 1. If T is a tetrahedron whose vertices have integer coordinates, then its volume is

of the form V (T ) = D/6 for some integer D.

Lemma 2. The volume of a regular tetrahedron T inscribed in a sphere of radius R is given

by V (T ) =
8
√

3R3

27
.

Assuming that the sphere x2 + y2 + z2 = N has an inscribed regular tetrahedron T whose

vertices have integer coordinates, we can combine the results of these lemmas (for R =
√
N)

to get

D = 6V (T ) =
16
√

3N3/2

9
=

16N

9

√
3N .

Because D is an integer, it follows that
√

3N is a rational number. Thus the prime factorization

of N must contain an odd number of factors 3 and an even number of factors p for any other

prime p ; therefore, N = 3m2 for some positive integer m.

Proof of Lemma 1: Let P , Q, R, and S be the vertices of the tetrahedron. As these are all

lattice points, the three vectors

~PQ = 〈q1, q2, q3〉, ~PR = 〈r1, r2, r3〉, ~PS = 〈s1, s2, s3〉

have integer components. We can use a triple product to express the volume as

V =
1

6
| ~PQ · ( ~PR× ~PS)| = 1

6

∣∣∣∣∣∣det

q1 q2 q3
r1 r2 r3
s1 s2 s3

∣∣∣∣∣∣ ,
and as the determinant is an integer, we are done.

Proof of Lemma 2: If a regular tetrahedron T is inscribed in a sphere of radius R, we can

choose a coordinate system in which the vertices of T are given by

P = (−d,−d,−d), Q = (d, d,−d), R = (d,−d, d), S = (−d, d, d)

with 3d2 = R2. We then have

~PQ = 〈0, 2d, 2d〉, ~PR = 〈2d, 0, 2d〉, ~PS = 〈2d, 2d, 0〉,
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and the volume is

V =
1

6
| ~PQ · ( ~PR× ~PS)| = 1

6

∣∣∣∣∣∣det

 0 2d 2d

2d 0 2d

2d 2d 0

∣∣∣∣∣∣ =
8

3
d3 =

8
√

3R3

27
.

Solution 2: As in Solution 1, the condition on N is sufficient. To show that it is necessary,

note that if

vi = (xi, yi, zi), i = 1, 2, 3, 4

are the vertices of a regular tetrahedron inscribed in the sphere x2 + y2 + z2 = N , we can add

the four antipodal points

wi = (−xi,−yi,−zi), i = 1, 2, 3, 4

to get the eight vertices of a cube. (This is easily seen by choosing an alternate coordinate

system as in the proof of Lemma 2 above.) Because this cube is inscribed in the sphere, its

space diagonals have length 2
√
N ; therefore, each edge of the cube has length 2

√
N/3 and its

volume is 8
(√

N/3
)3

. But the volume of the cube is the determinant of three vectors with

integer coordinates, so it is an integer, and as in Solution 1 it follows that N = 3m2 for some

positive integer m.
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A4 Let

I(R) =

∫∫
x2+y2≤R2

(
1 + 2x2

1 + x4 + 6x2y2 + y4
− 1 + y2

2 + x4 + y4

)
dx dy .

Find

lim
R→∞

I(R) ,

or show that this limit does not exist.

Answer: The limit exists and equals
π
√

2 log 2

2
.

Solution: First we symmetrize the integrand. Let

f(x, y) =
1 + 2x2

1 + x4 + 6x2y2 + y4
− 1 + y2

2 + x4 + y4
, so that

f(x, y) + f(y, x) =
2 + 2(x2 + y2)

1 + x4 + 6x2y2 + y4
− 2 + x2 + y2

2 + x4 + y4
and thus

2 I(R) =

∫∫
x2+y2≤R2

2 + 2(x2 + y2)

1 + x4 + 6x2y2 + y4
− 2 + x2 + y2

2 + x4 + y4
dx dy.

Now consider the “first part” of this double integral, say

J(R) =

∫∫
x2+y2≤R2

2 + 2(x2 + y2)

1 + x4 + 6x2y2 + y4
dx dy.

Let u = x− y and v = x+ y. Then

u2+v2 = (x+y)2+(x−y)2 = 2(x2+y2), u4+v4 = (x+y)4+(x−y)4 = 2x4+2y4+12x2y2

and
∂(u, v)

∂(x, y)
=

∣∣∣∣1 −1

1 1

∣∣∣∣ = 2 , so

J(R) =

∫∫
x2+y2≤R2

2 + 2(x2 + y2)

2 + 2x4 + 12x2y2 + 2y4
2 dx dy

=

∫∫
u2+v2≤2R2

2 + u2 + v2

2 + u4 + v4
du dv.

Note that if we rename the variables in this last integral x, y instead of u, v, the integrand

will be the same as the integrand of the “second part” of the double integral for 2 I(R) above.

Thus we can recombine the parts to get

2 I(R) =

∫∫
R2<x2+y2≤2R2

2 + x2 + y2

2 + x4 + y4
dx dy.

Converting to polar coordinates, we get

2 I(R) =

∫ 2π

t=0

∫ R
√
2

r=R

2 + r2

2 + r4(cos4 t+ sin4 t)
r dr dt.
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As R→∞, throughout the range of integration r also goes to infinity and

2r + r3

2 + r4(cos4 t+ sin4 t)
=

1

r(cos4 t+ sin4 t)
+O(1/r3) ,

where the error term makes a vanishing contribution to the integral. So

2 I(R) ∼

[∫ R
√
2

r=R

dr

r

] [∫ 2π

t=0

dt

cos4 t+ sin4 t

]
.

Now ∫ R
√
2

r=R

dr

r
= log(R

√
2)− log(R) = log(

√
2) = 1

2 log 2

and ∫ 2π

t=0

dt

cos4 t+ sin4 t
=

∫ 2π

t=0

dt

1− 2 sin2 t cos2 t
=

∫ 2π

t=0

2 dt

2− sin2(2t)

=

∫ 2π

t=0

2 dt

2 cos2(2t) + sin2(2t)
.

The integrand is periodic with period
π

2
and is also even, so we can proceed as follows:

∫ 2π

t=0

dt

cos4 t+ sin4 t
= 4

∫ π/4

t=−π/4

2 dt

2 cos2(2t) + sin2(2t)
= 8

∫ π/4

t=0

2 dt

2 cos2(2t) + sin2(2t)

=

∫ π/4

t=0

16 sec2(2t) dt

2 + tan2(2t)

=

∫ ∞
w=0

8 dw

2 + w2
=

∫ ∞
w=0

4 dw

1 + w2/2

= 4
√

2 tan−1(w/
√

2)
∣∣∣∞
w=0

= 2π
√

2 .

So

lim
R→∞

2 I(R) = (
1

2
log 2)(2π

√
2) = π

√
2 log 2 , and lim

R→∞
I(R) =

π
√

2 log 2

2
.
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A5 Let A be the set of all integers n such that 1 ≤ n ≤ 2021 and gcd(n, 2021) = 1. For every

nonnegative integer j, let

S(j) =
∑
n∈A

nj .

Determine all values of j such that S(j) is a multiple of 2021.

Answer: All j that are not multiples of 42 or 46.

Solution: Note that modulo 2021, the set A consists precisely of the elements of the mul-

tiplicative group. Multiplying by an element of that group permutes the elements, so if x is

relatively prime to 2021, then

xj · S(j) =
∑
n∈A

(xn)j ≡
∑
m∈A

mj ≡ S(j) (mod 2021).

Therefore,

(xj − 1)S(j) ≡ 0 (mod 2021).

Also note that 2021 = 2025− 4 = 452 − 22 = 43 · 47 gives the prime factorization of 2021. Let

x be a primitive root modulo 43 (that is, an integer between 1 and 42 that is a generator of

the cyclic group (Z/43Z)∗, which is the multiplicative group of the field with 43 elements).

Then xj − 1 ≡ 0 (mod 43) if and only if j is a multiple of 42 ; also, x is relatively prime to

2021. In particular, if j is not a multiple of 42 we have

(xj − 1)S(j) ≡ 0 (mod 2021)⇒ (xj − 1)S(j) ≡ 0 (mod 43)⇒ S(j) ≡ 0 (mod 43) .

Similarly, if y is a primitive root modulo 47 and y 6= 43, we have

(yj − 1)S(j) ≡ 0 (mod 2021)⇒ (yj − 1)S(j) ≡ 0 (mod 47)⇒ S(j) ≡ 0 (mod 47)

whenever j is not a multiple of 46. So if j is not a multiple of 42 or 46, then S(j) is a multiple

of both 43 and 47, hence of 2021.

Conversely, suppose that j is a multiple of 42. Then nj ≡ 1 (mod 43) for all n in the sum,

and S(j) is therefore not a multiple of 43 (or of 2021), as

S(j) ≡
∑
n∈A

1 = 42 · 46 · 1 ≡ −3 ≡ 40 (mod 43).

Similarly, if j is a multiple of 46, then S(j) ≡ 5 (mod 47).
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A6 Let P (x) be a polynomial whose coefficients are all either 0 or 1. Suppose that P (x) can be

written as the product of two nonconstant polynomials with integer coefficients. Does it follow

that P (2) is a composite integer?

Solution: Yes, we will show that P (2) must be composite. Let P (x) = F (x)G(x) have

degree N , where F (x) and G(x) are nonconstant polynomials with integer coefficients, and

suppose that P (2) = p were prime. Then either F (2) or G(2) would be a unit, so without

loss of generality we may assume that G(2) = 1. We have N ≥ 2 because F (x) and G(x) are

nonconstant, and we can write

P (x) =

N∑
n=0

σnx
n ,

where each σn is either 0 or 1 and σN = 1.

Because the coefficients of P (x) are nonnegative integers, P (x) cannot have a positive real

root, so G(x) cannot have a positive real root either. Thus, as G(2) is positive, G(x) must be

positive for all x > 0. In particular, because σN = 1 is the product of the leading coefficients

of F (x) and G(x), the polynomial G(x) must be monic. Let r1 , . . . , rk be the (complex, not

necessarily distinct) roots of G(x), so that

G(x) =

k∏
j=1

(x− rj) .

Consider the integer G(1). Because G(x) > 0 for x > 0, we have G(1) ≥ 1 = G(2). In

particular, |G(1)| ≥ |G(2)|, and using the factorization of G(x) we get

k∏
j=1

|1− rj | ≥
k∏
j=1

|2− rj | .

It follows that G(x) must have at least one root ρ with |ρ − 1| ≥ |ρ − 2|, which is equivalent

to Re(ρ) ≥ 3
2 . This implies that |ρ| ≥ 3

2 ; note that ρ is also a root of P (x).

First consider the case N = 2. Dividing P (ρ) = 0 by ρ yields

ρ+ σ1 +
σ0
ρ

= 0.

We have Re(ρ) ≥ 3
2 > 0 and hence

Re

(
1

ρ

)
= Re

(
ρ̄

|ρ|2

)
=

1

|ρ|2
Re (ρ) > 0.

But then

Re(ρ) ≤ Re

(
ρ+ σ1 +

σ0
ρ

)
= 0 ,

which is a contradiction. (Alternatively, one can check the four possible polynomials P (x) of

degree 2 with coefficients from {0, 1}.)

For N > 2, we again divide P (ρ) = 0 by ρN−1, which now yields

ρ+ σN−1 +
σN−2
ρ

= −σN−3
ρ2

− · · · − σ0
ρN−1

.

Once again, the terms on the left have nonnegative real parts. The triangle inequality gives

Re(ρ) ≤ Re

(
ρ+ σN−1 +

σN−2
ρ

)
≤
∣∣∣∣ρ+ σN−1 +

σN−2
ρ

∣∣∣∣ ≤ σN−3
|ρ|2

+ · · · +
σ0
|ρ|N−1

,
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and we can estimate the sum on the right using an infinite geometric series:

σN−3
|ρ|2

+ · · · +
σ0
|ρ|N−1

≤ 1

|ρ|2
+ · · · +

1

|ρ|N−1

≤ 1

|ρ|2

(
1 +

1

|ρ|
+

1

|ρ|2
+ · · ·

)
=

1

|ρ|2
· 1

1− 1/|ρ|
=

1

|ρ|(|ρ| − 1)
.

But
1

x(x− 1)
is a decreasing function of x for x > 1, and |ρ| ≥ Re(ρ) ≥ 3

2
, so we get

3

2
≤ Re(ρ) ≤ 1

|ρ|(|ρ| − 1)
≤ 1

3
2 ( 3

2 − 1)
=

4

3
,

a contradiction.

Remark. There are polynomials like x7 + x2 + x+ 1 = (x+ 1)(x2 + 1)(x4 − x3 + 1) or

x7 +x3 +x2 +x+ 1 (which is irreducible) which have roots with real part greater than 1. The

polynomial x11 + x3 + x2 + x+ 1 has a root r with |r− 2| < 1. Hence one needs to take some

care with this argument.
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B1 Suppose that the plane is tiled with an infinite checkerboard of unit squares. If another unit

square is dropped on the plane at random with position and orientation independent of the

checkerboard tiling, what is the probability that it does not cover any of the corners of the

squares of the checkerboard?

Answer:
2(π − 3)

π
.

Solution: For convenience, choose the center of one of the squares of the checkerboard to

be the origin, choose axes parallel to the sides of the squares, and let the squares have side

length 2, so that one of them, say S, will have its corners at (±1,±1). Let S′ be the additional

square that is dropped at random; we may assume that the center of S′ is at some uniformly

distributed random position in [−1, 1]× [−1, 1], and that S′ is rotated clockwise relative to S

by some uniformly distributed angle θ.

We will determine the allowable positions for S′ by conditioning on the angle; by the eight-fold

dihedral symmetry, we need only consider 0 ≤ θ < π
4 . Given such a θ, first suppose that the

center of S′ is at the origin (so it coincides with the center of S). Then one of the perpendiculars

from the center of S′ to its edge is the unit vector ~u = 〈sin θ, cos θ〉. The upper right corner

of S at (1, 1) projects along ~u to a vector of length 〈1, 1〉 · 〈sin θ, cos θ〉 = sin θ + cos θ . This

means that S′ can be shifted a distance of sin θ + cos θ − 1 in the direction of ~u before it hits

that corner. By symmetry, the allowable region for the center of S′ is a square with side length

2(sin θ + cos θ − 1) (centered at the origin, and rotated by an angle of θ).

The total probability is therefore

4

π

∫ π
4

0

Area of allowable region

Total area of square
dθ =

4

π

∫ π
4

0

[2(sin θ + cos θ − 1)]2

4
dθ

=
4

π

∫ π
4

0

2 + sin(2θ)− 2 sin θ − 2 cos θ dθ

=
4

π

(
π

2
+

1

2
+ 2

(
1√
2
− 1

)
− 2 · 1√

2

)
=

2(π − 3)

π
.
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B2 Determine the maximum value of the sum

S =

∞∑
n=1

n

2n
(a1a2 · · · an)

1/n

over all sequences a1, a2, a3, · · · of nonnegative real numbers satisfying

∞∑
k=1

ak = 1 .

Answer: The maximum value is S =
2

3
; it is achieved by the sequence ak =

3

4k
.

Solution: First consider geometric sequences, which are given by ak = a1r
k−1 for all k, with

0 < r < 1. For such a sequence we have

(a1a2 · · · an)1/n = a1
(
1 · r · · · · · rn−1

)1/n
= a1

(
rn(n−1)/2

)1/n
= a1 r

(n−1)/2 ,

and the constraint
∞∑
k=1

ak = 1 yields a1 = 1− r. Thus we can calculate S as a function of r:

S =

∞∑
n=1

n

2n
(a1a2 · · · an)

1/n
= (1− r)

∞∑
n=1

nr(n−1)/2

2n
=

1− r√
r

∞∑
n=1

n

(√
r

2

)n
=

1− r√
r
f

(√
r

2

)
=

2(1− r)
(2−

√
r)2

, where f(x) =

∞∑
n=1

nxn = x
d

dx

(
1

1− x

)
=

x

(1− x)2
.

By taking the derivative of S with respect to r, which is zero only for r =
1

4
, and comparing

the values of
2(1− r)

(2−
√
r)2

for r = 0, r =
1

4
, and r = 1, we find that the maximum value of S

that can be obtained for a geometric sequence is
2(3/4)

(3/2)2
=

2

3
, for r =

1

4
. It remains to show

that this is actually the maximum value for any sequence.

Given any sequence of nonnegative numbers that sum to 1, consider the geometric mean, say

Gn , of the first n numbers. This can be written as

Gn = (a1a2 · · · an)
1/n

=

[
(4a1) · (42a2) · · · (4nan)

41 · 42 · · · 4n

]1/n
=

1

2n+1

[
(4a1) · (42a2) · · · (4nan)

]1/n
,

and we can then apply the AM-GM inequality to obtain

Gn ≤
1

2n+1

[
(4a1) + (42a2) + · · · + (4nan)

]
n

=
1

n2n+1

n∑
k=1

4kak .

We then have

S =

∞∑
n=1

n

2n
Gn ≤

∞∑
n=1

(
n

2n
· 1

n2n+1

n∑
k=1

4kak

)
=

1

2

∞∑
n=1

n∑
k=1

ak
4n−k

.

This series is absolutely convergent, so we can change the order of summation to get

S ≤ 1

2

∞∑
k=1

∞∑
n=k

ak
4n−k

=
1

2

∞∑
k=1

∞∑
j=0

ak
4j

=
1

2

 ∞∑
j=0

1

4j

[ ∞∑
k=1

ak

]
.

The first bracketed factor is a geometric series with sum
1

1− 1
4

=
4

3
and the second factor is

1 by the given constraint, so S ≤ 2
3 , and we are done.
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B3 Let h(x, y) be a real-valued function that is twice continuously differentiable throughout R2,

and define

ρ(x, y) = yhx − xhy .

Prove or disprove: For any positive constants d and r with d > r, there is a circle S of radius

r whose center is a distance d away from the origin such that the integral of ρ over the interior

of S is zero.

Solution: We will prove the statement above. First we introduce polar coordinates R, θ

centered at the origin, so that x = R cos θ and y = R sin θ. Then

∂h

∂θ
= hx xθ + hy yθ = −R sin θ hx +R cos θ hy = −yhx + xhy .

So if we define P (R, θ) = ρ(x, y), then P (R, θ) = −∂h
∂θ

and consequently the integral of P over

any circle centered at the origin is zero; that is,∫ 2π

θ=0

P (R, θ) dθ = 0 for every R .

Now let S(α) be the disc of radius r centered at (x, y) = (d cosα, d sinα) and let

I(α) =

∫∫
S(α)

ρ(x, y) dA ;

our goal is to show that I(α) = 0 for some value of α. We will set up I(α) using polar

coordinates R, ϕ centered at the origin, but with the polar angle ϕ measured from α, so

ϕ = θ − α. Note that the disk subtends an angle 2β at the origin, where

β = sin−1
( r
d

)
.

Thus ϕ ranges from −β to β, and for any fixed ϕ, R ranges from R−(ϕ) to R+(ϕ) , where

R−(ϕ) , R+(ϕ) are the distances from the origin to the closest and farthest points of the disk

along the ray for ϕ. (A short calculation using the law of cosines shows that

R±(ϕ) = d cosϕ±
√
r2 − d2 sin2 ϕ , but we won’t need this formula.) Thus we have

I(α) =

∫ β

ϕ=−β

∫ R+(ϕ)

R=R−(ϕ)

P (R,α+ ϕ)RdRdϕ.

Note that I(α) is a continuous (and even differentiable) function of α, because ρ(x, y) is

continuously differentiable. Finally, consider the average value M of this function over one

period:

M =
1

2π

∫ 2π

α=0

I(α) dα

=
1

2π

∫ 2π

α=0

∫ β

ϕ=−β

∫ R+(ϕ)

R=R−(ϕ)

P (R,α+ ϕ)RdRdϕdα

=
1

2π

∫ β

ϕ=−β

∫ R+(ϕ)

R=R−(ϕ)

[∫ 2π

α=0

P (R,α+ ϕ) dα

]
RdRdϕ

= 0 ,

where the last step uses the fact that the integral of P over any circle centered at the origin

is zero. But by the mean value theorem for integrals, I(α) must assume this mean value 0 at

least once (actually, at least twice) on the interval [0, 2π], so we are done.
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B4 Let F0 , F1 , . . . be the sequence of Fibonacci numbers, with F0 = 0, F1 = 1, and

Fn = Fn−1 + Fn−2 for n ≥ 2. For m > 2, let Rm be the remainder when the product
Fm−1∏
k=1

kk

is divided by Fm . Prove that Rm is also a Fibonacci number.

Solution: The hyperfactorial of any positive integer n is defined as

H(n) ≡
n∏
k=1

kk.

Thus, Rm is the remainder when H(Fm − 1) is divided by Fm .

If m = 3, then Fm = 2 and H(Fm − 1) = 1, so R3 = 1, a Fibonacci number.

If m = 4, then Fm = 3 and H(Fm − 1) = 4 ≡ 1 (mod 3), so R4 = 1.

For m > 4, we will show that the remainder Rm is one of the three Fibonacci numbers F0 = 0 ,

Fm−1 , Fm−2 .

If Fm is composite, then Fm = qr for some integers 1 < q ≤ r < Fm . If q and r are distinct,

then qq and rr are among the factors in the product H(Fm − 1), so H(Fm − 1) is divisible by

qr = Fm and Rm = 0. If q = r, then Fm = q2 divides qq and again, H(Fm − 1) is divisible by

Fm and Rm = 0. So we are left with the case that Fm ≥ 5 is prime.

Let p = Fm , p ≥ 5 , be prime. We use two standard Fibonacci identities, which can be proved

together by induction on i :

F2i = Fi(Fi−1 + Fi+1) , F2i+1 = F 2
i + F 2

i+1 .

The first identity shows that if Fm is prime and m > 4, m cannot be even. The second identity

then shows that Fm is the sum of two squares, so p = Fm ≡ 1 (mod 4).

Now consider H(p− 1) modulo p. Note that for each k with 1 ≤ k ≤ p− 1 we have

kk · (p− k)p−k ≡ kk · (−1)p−k kp−k

= (−1)k+1 kp ≡ (−1)k+1 k (mod p) by Fermat’s little theorem, so

H(p− 1)2 =

(
p−1∏
k=1

kk

)(
p−1∏
k=1

(p− k)p−k

)
=

p−1∏
k=1

kk(p− k)p−k

≡
p−1∏
k=1

(−1)k+1k =

(
p−1∏
k=1

(−1)k+1

)
(p− 1)! (mod p) .

But (p− 1)! ≡ −1 (mod p) by Wilson’s theorem, so

H(p− 1)2 ≡
p−1∏
k=0

(−1)k+1 ≡ (−1)p(p+1)/2 = −1 (mod p) ,

where the last step uses that p ≡ 1 (mod 4). Finally, we use a third Fibonacci identity:

F 2
j = Fj−1Fj+1 + (−1)j−1 ,

which can be shown by interpreting Fj−1Fj+1−F 2
j as the determinant of the matrix

(
Fj−1 Fj
Fj Fj+1

)
,

which is the jth power of the matrix

(
0 1

1 1

)
. In particular, for j = m−1 we see that, because

m is odd and Fm = p,

F 2
m−1 = Fm−2 p+ (−1)m−2 ≡ −1 (mod p) .
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It follows that H(p − 1)2 ≡ F 2
m−1 (mod p), so, as p is prime, either H(p − 1) ≡ Fm−1 or

H(p− 1) ≡ −Fm−1 (mod p). Then the remainder Rm is Fm−1 in the first case and

Fm − Fm−1 = Fm−2 in the second, so we are done.
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B5 Say that an n-by-n matrix A = (aij)1≤i,j≤n with integer entries is very odd if, for every

nonempty subset S of {1, 2, . . . , n}, the |S|-by-|S| submatrix (aij)i,j∈S has odd determinant.

Prove that if A is very odd, then Ak is very odd for every k ≥ 1.

Solution: First of all, because we are only interested in determinants modulo 2, we can reduce

the entries of A modulo 2 ; that is, we may assume that all entries of A are in {0, 1} .

Claim: Under this assumption, a necessary and sufficient condition for A to be very odd is

that there exists a permutation π of {1, . . . , n} such that, when both the rows and columns of

A are permuted by π, A becomes upper triangular with all diagonal entries 1. In other words,

A is very odd if and only if there exists an n-by-n permutation matrix P such that PAP−1 is

upper triangular with 1’s along the diagonal.

Note that if PAP−1 is upper triangular with 1’s along the diagonal, then so is

PAkP−1 = (PAP−1)k. Therefore, the problem statement follows immediately from the claim.

Proof of the claim: To show the condition is sufficient, note that if A is upper triangular with

1’s on the diagonal, then any submatrix (aij)i,j∈S has that same form, so such a submatrix

has determinant 1. Also, permuting the rows and columns of A by a permutation π does not

affect the set of determinants of the submatrices.

Now we show the condition is necessary. Suppose that A is very odd (and has entries from

{0, 1}). By taking the subsets S = {i} of {1, . . . , n}, we see that aii = 1 for all i. Now consider

a two-element subset {i, j}. Because the determinant aiiajj − aijaji must be odd, at least one

of aij and aji must be zero. Define a relation C on {1, . . . , n} by

iC j if and only if aij = 1 .

Then we’ve seen that for i 6= j, we cannot have both i C j and j C i. In fact, we’ll show

that the relation C is acyclic, meaning that there is no cycle i1 C i2 C · · · C ik C i1 with

k > 1 (and i1 6= i2). Suppose we do have such a cycle, and take one for which k is as

small as possible. Consider the submatrix M = (aij)i,j∈S of A corresponding to the subset

S = {i1, i2, . . . , ik}. Then in the expression of det(M) as a sum of signed products of entries of

M , each corresponding to a permutation of S, there will be exactly two nonzero terms, namely

the “diagonal” term ai1i1ai2i2 · · · aikik = 1 and a term ±ai1i2ai2i3 · · · aiki1 = ±1 corresponding

to the cycle. (Any nonzero term in the determinant has to be ± a product of 1’s, and unless

the corresponding permutation is the identity it has at least one nontrivial cycle in its cycle

decomposition, which is then a cycle for C ; because k is as small as possible, this can only be

a k-cycle, which means it must involve all the elements of S, and if it weren’t the original cycle

(i1 i2 · · · ik), it could be used together with the original cycle to construct a shorter cycle for

C .) But then det(M) is even, which is a contradiction.

Because C is acyclic, we can find a permutation π of {1, . . . , n} such that iC j implies

π(i) ≤ π(j). If we then use π to rearrange the rows and columns of A, the new matrix will

have the desired upper triangular form with 1’s on the diagonal. (An explicit procedure for

constructing π is as follows: List the elements of {1, . . . , n} in stages, starting with the elements

- in any order - that have no “predecessors” under the relation C. At each subsequent stage,

list, in any order, the elements all of whose predecessors have already been listed. When the

list is complete, let π(i) be the ith number on the list.)
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B6 Given an ordered list of 3N real numbers, we can trim it to form a list of N numbers as follows:

We divide the list into N groups of 3 consecutive numbers, and within each group, discard the

highest and lowest numbers, keeping only the median.

Consider generating a random number X by the following procedure: Start with a list of 32021

numbers, drawn independently and uniformly at random between 0 and 1. Then trim this list

as defined above, leaving a list of 32020 numbers. Then trim again repeatedly until just one

number remains; let X be this number. Let µ be the expected value of |X − 1
2 |. Show that

µ ≥ 1

4

(
2

3

)2021
.

Solution: First, replace each random number x by z = x− 1/2, which will lie in the interval

[−1/2, 1/2]. Let ρn(z) be the probability density function on that interval for each of the

numbers that remain after n trims. We know that ρ0(z) = 1 because the initial distribution is

uniform. Furthermore, ρn(−z) = ρn(z) for all n, as the process is now symmetric with respect

to the origin. This implies that

∫ 0

− 1
2

ρn(t) dt =

∫ 1
2

0

ρn(t) dt =
1

2
.

We proceed to calculate ρn , the probability density after n trims, from ρn−1 . When we carry

out the nth trim, there are 3! = 6 equivalent orderings of the three numbers in a group, so we

may first assume a fixed ordering of these numbers (specifically, let the first be the median,

the second be the smallest, and the third be the largest) and then multiply by 6 to take the

possible orderings into account. This yields the recursive formula

ρn(z) = 6 ρn−1(z)

[∫ z

− 1
2

ρn−1(t) dt

]∫ 1
2

z

ρn−1(t) dt


= 6 ρn−1(z)

[
1

2
+

∫ z

0

ρn−1(t) dt

] [
1

2
−
∫ z

0

ρn−1(t) dt

]
=

3

2
ρn−1(z)

[
1− 4

(∫ z

0

ρn−1(t) dt

)2 ]
.

It follows that ρn(0) = 3
2ρn−1(0), so by induction on n we have ρn(0) =

(
3
2

)n
. Also by

induction, for n ≥ 1 the function ρn(z) is monotonically decreasing with respect to |z|, and in

particular ρn(z) ≤ ρn(0) =
(
3
2

)n
.

Now let n = 2021, so the expected value µ in the problem is given by

µ =

∫ 1/2

−1/2
|z|ρn(z) dz = 2

∫ 1/2

0

zρn(z) dz .

Let M = ρn(0) =
(
3
2

)2021
. For 0 ≤ z ≤ 1

2 , define the antiderivative

S(z) =

∫ z

t=0

ρn(t) dt of ρn(z) ;

note that

S(0) = 0, S( 1
2 ) =

∫ 1
2

0

ρn(t) dt =
1

2
,
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and that, by the monotonicity of ρn , we have the estimate S(z) ≤Mz , so in fact

S(z) ≤ min(Mz,
1

2
) .

Finally, we integrate by parts to get

µ = 2

∫ 1/2

0

zρn(z) dz = 2zS(z)
∣∣∣1/2
z=0
− 2

∫ 1/2

z=0

S(z) dz

=
1

2
− 2

∫ 1/2

z=0

S(z) dz

≥ 1

2
− 2

∫ 1/(2M)

z=0

Mz dz − 2

∫ 1/2

z=1/(2M)

1

2
dz

=
1

2
− 1

4M
−
(

1

2
− 1

2M

)
=

1

4M
=

1

4

(
2

3

)2021
,

as desired.

Comment: The intuition behind the lower bound on µ is that if we consider all the nonin-

creasing functions ρ(z) on [0, 12 ] that have value
(
3
2

)n
at z = 0 and whose integral over that

interval is 1
2 , the smallest possible integral

∫ 1/2

0
zρ(z) dz will occur for the step function which

stays constant until z = 1
2

(
2
3

)n
and is zero thereafter.
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