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T. N. T. Goodman [1] and C.W. Barnes [2] gave two interesting proofs of the limit 
limn1oo(l + 1/n)tl = e using the inequalities 

e / 1'1z 
I + 1/n '1+ n' e. 

(See also [3, p. 354].) 
In this note we present a very elementary proof that the inequalities 

(1 + -) <e < (1 +-1 (2) 

hold for every integers n > 0 and m > 1. We use only the well-known arithmetic- 
geometric mean inequality (AGMI): For any n positive real numbers xl, x2, . X. , 

we have 

Xl + X2 + ***+ Xti 
v~X 1X2 ... X,i < . 

n 

or, equivalently, 

X1X2 ... Xn < (3+ 

equality holds if and only if xl = x2= = xn. (See, e.g., [4] for more on the AGMI.) 
Now set xn = (1 + I/n)'. By the AGMI (3) with n + 1 terms, we have 

fl 

,=(l+ )1 [(1+ 1) + ., i+ (I + +1 

tn + I + n1 t+ 
(n++1 + =X,+1, 

which proves that the sequence {xn} is increasing. 
For an arbitrary positive integer q > 1, let the equation I/p + 1/q = 1 determine 

the number p > 1; note that 1 + q/p = q. Using (3) again, we see that 
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Thus the sequence {yn} is decreasing and obviously positive, so it converges to a limit 
we call e, with y,, > e. On the other hand, 

Xn ( + n) r(n + 1)2 1nn + 1 
Xn+1 (1+ 1 )t+1 n(n + 2), n + 2 

n 

n+1 
(n+1) + + (tl+1) +)1+1 

< n(nz+2) n(n+2) n+2 

n +1 

( (n+1)2 + n+1 n1+1 

ni+2 n+2 - 1. 

n+ I 

This shows that the sequence {x, I is increasing, and clearly xn < Yn <Yi = 4. Hence 
{xn} converges, and x,, < lim,,,0o Xn for all n. We can prove easily that limn, x,? = 
limno,o Yn = e, and (5) follows. 
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50 Years Ago in the MAGAZINE 

From John Lowe's article, "Automatic Computation as an Aid in Aeronautical 
Engineering," Vol. 25, No. 1, (Sept.-Oct., 1951): 

A tremendous amount of numerical labor is involved in designing today's air- 
craft and missiles.... For example, in one phase of the fuselage stress analysis 
of a single configuration of the DC-6 airplane, 200,000 multiplications and addi- 
tions were performed, and the flutter analysis required 1,000,000 multiplications 
and additions. In these facts we find our first reason for the use of automatic 
computers.... 

Machines must be programmed in the most minute detail. Problems which 
one does not consider in computing with a desk calculator become of paramount 
importance. For example, the determination of whether or not a given quantity is 
zero may require some planning. If data in graphical form are to be introduced 
into a computation, these data must be translated to numerical form, perhaps by 
some curve fitting method.... 

There exists a stringent shortage of people qualified for this work and this 
shortage shows every sign of becoming more acute. Capable people are being 
paid well. The field is so new that few people even know it exists. So little is 
known that ambitious people can be doing truly original work early in their ca- 
reers. I hope that it will receive increasing recognition in school curricula and 
from student counselors. Today, few other fields offer technical or scientific col- 
lege graduates the opportunity for advancement that is offered by computing. 
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