
CLASSROOM CAPSULES
EDITOR

Michael K. Kinyon
Indiana University South Bend
South Bend, IN 46634

Classroom Capsules consists primarily of short notes (1–3 pages) that convey new mathematical in-
sights and effective teaching strategies for college mathematics instruction. Please submit manuscripts
prepared according to the guidelines on the inside front cover to the new Editors Ricardo Alfaro and
Steven Althoen, University of Michigan-Flint, Flint, MI 48502.

Distortion of average class size: The Lake Wobegon effect
Allen Schwenk (schwenk@wmich.edu), Western Michigan University, Kalamazoo,
MI 49008

Universities love to boast about their presumably small average class size. And how
often are parents stunned to hear how large their freshman’s average class size seems
to be? And since they are using the same words, we can safely assume that they are
reporting the same thing. Can’t we?

Actually, no! There is a distorting phenomenon that occurs when computing average
class sizes that needs to be widely circulated. Namely, the average reported by the
university, which is the same as the average experienced by the faculty, is significantly
different from the average experienced by the students. Rather than try to explain this
at the abstract level, let me present a hypothetical example.

A certain (remarkably small) university has precisely 200 students. All 200 are
taking the same five courses, say English, Mathematics, Economics, History, and Psy-
chology. Suppose that History and Psychology are taught in large lectures of 200, but
all the other classes are taught in small sections of 20 students each. What is the aver-
age class size?

Course
Number of students

in each section
Number of
Sections

Total number of students
in this course

English 20 10 200
Mathematics 20 10 200
Economics 20 10 200
History 200 1 200
Psychology 200 1 200

Totals 32 1000

The average class size is 1000
32 = 31.25. This is the figure an administrator would

report. It is also the figure that the faculty experience when reporting their teaching
loads, since each class is reported by one instructor. It accurately describes the experi-
ence of the university in reporting how large, on the average, are our classes. However,
it is a serious error to presume that a typical student experiences the same “average.”
In our example we have 200 students all having the same class size experience. Each
one of them has five classes, three with 20 students and two with 200. Thus, they all
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compute their personal average class size as 460
5 = 92. Observe that every single stu-

dent in our example experiences an average class size nearly three times as large as
the university claims! How can this be? How can every student have classes that are so
much larger than average? Shades of Lake Wobegon, where the children are all above
average!

The answer is that when the institution computes average class size it counts each
class exactly once, but when students compute their own personal average class size
the large lectures get experienced and reported 200 times while each small class gets
reported only 20 times. This shifts the average considerably toward the higher end.
Neither the university nor the student is wrong or deceitful, but the averages they report
are very different animals. The average experience of the faculty and the administra-
tion is truthfully represented by the university average; the typical student-experienced
class size is not. In all fairness to our students, we must understand this difference, and
we must avoid the temptation to compute the average class size in the customary man-
ner and then shape our opinions and policies on the premise that this average will
somehow reflect the typical student experience.

My example is highly contrived to keep the arithmetic simple, but I can prove math-
ematically that the student-experienced average is always greater than the institution
average. How much greater depends upon the disparity between the largest and the
smallest classes. If classes are nearly uniform, the difference is insignificant, perhaps
only a tenth of a point. But when there is a tenfold disparity, the student experience
can be more than double, as my example illustrates. Of course in the real world we
don’t have all students taking precisely the same courses, but the effects are similar. If
you don’t trust my selection of an example, construct your own. I guarantee a similar
discrepancy, though possibly less severe.

Before giving a rigorous comparison, we need to specify how we compute the av-
erage class size experienced by students. This is not a trivial issue. Consider two con-
trived cases.

Case 1. Ann is enrolled in one class that has 20 students, while Bob has a schedule
of five classes, each with 200 students. Clearly Ann’s average is 20 and Bob’s is 200.
Together they average 110.

Case 2. Carl has a single class of size 200, while Diane is in five classes of size 20.
Again, the average size for both students is 110.

Something doesn’t seem quite right here. We get the same average in each case,
but doesn’t Case 1 suggest mostly large classes while Case 2 has mostly small? The
problem is that we are treating each student’s experience as having equal weight when
we compute these averages. But the one-class experience of Ann and Carl shouldn’t
count as heavily as the 5-course experience of Bob and Diane. And if we have a student
who has taken 40 classes, that experience should influence the average more strongly
than any of these. To reflect this observation, we choose to use a weighted average
by weighting each student’s personal average by the number of courses he or she has
taken. Thus in Case 1 we get 1·20+5·200

1+5 = 170, while Case 2 produces 1·200+5·20
1+5 =

50. In effect, the personal average disappears from the formula and is replaced by
a sum of all the student class sizes observed, then divided by the total number of
classes. The weighted average seems to do a better job of reflecting the reality of
student experience.

We are now ready to introduce a bit of notation to allow a rigorous comparison. As-
sume that the number of classes (or sections) of size i is given by ci , and the maximum
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class size is m. Notice that each size i appears ci times, and the total number of classes
is the sum of the ci ’s. The university average class size c̄ is therefore

c̄ =
∑m

i=1 i · ci∑m
i=1 ci

.

To compute the student-experienced average, observe that each class of size i gets
reported by i students, for a total of ici reports. This makes the weighted average of
all the student computed average class sizes

s̄ =
∑m

i=1 i · ici∑m
i=1 ici

.

In the student average s̄ the larger classes have higher weights. The university av-
erage c̄ weighs each class equally. Consequently, for any distribution of class sizes
whatsoever, the student average will always exceed the university average. The only
way for equality to occur is to have all classes with equal sizes.

If that explanation is not to your liking, we can use statistics. Since the variance of c̄
is the average of the squares of the deviations from the mean, it is certainly nonnegative
[2, p. 98], so in our problem we find

Var(c̄) =
∑m

i=1 i2ci∑m
i=1 ci

− (c̄)2 =
∑m

i=1 i2ci∑m
i=1 ci

−
[∑m

i=1 i · ci∑m
i=1 ci

]2

≥ 0

Upon dividing by c̄ we find[∑m
i=1 i2ci∑m

i=1 ci

] [ ∑m
i=1 ci∑m

i=1 i · ci

]
−

[∑m
i=1 i · ci∑m

i=1 ci

]
≥ 0

Canceling the
∑

ci in the first term yields s̄ − c̄ ≥ 0. So certainly the student-
experienced weighted average is always greater than the university average, with
equality only if the variance is zero; that is, only if all classes are precisely the same
size.

Finally, if statistics is not your cup of tea, perhaps you are a fan of Cauchy and
Schwarz. Define two vectors of dimension m, the maximum class size:

�v = [√c1,
√

c2,
√

c3, . . . ,
√

cm]
�w = [1√

c1, 2
√

c2, 3
√

c3, . . . , m
√

cm]
According to the Cauchy-Schwarz inequality [1, p. 195],

(�v · �v)( �w · �w) ≥ (�v · �w)2[∑m

i=1
ci

] [∑m

i=1
i2ci

]
≥

[∑m

i=1
i · ci

]2
.

Upon dividing by
[∑m

i=1 ci

] [∑m
i=1 i · ci

]
, we get, yet again, s̄ ≥ c̄. And when might

these be equal? Why only if one vectors is a scalar multiple of the other. This happens
only if precisely one term is nonzero. That is, if all classes are the same size.

In the real world this never happens. Consequently, the student average s̄ always
exceeds c̄, the university reported average. Sometimes this can be by a small amount;
sometimes, as in my hypothetical example, the effect is large. At a typical university I
would guess that 90% of the students experience an average class size larger than what
the university reports.
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◦

Exhaustive sampling and related binomial identities
Jim Ridenhour (ridenhourj@apsu.edu) and David Grimmett (grimmettd@apsu.edu),
Austin Peay State University, Clarksville, TN 37044

There are many situations that involve repeated sampling from the same set of ob-
servations. For example, suppose a professor has a test bank of 100 questions for a
particular course and randomly chooses 25 of these questions for the final exam each
semester. A persistent but not very talented student repeats the course several times.
Obviously, the student has no chance of having seen all the questions before taking
the course four times. What is the probability that the student will have seen all the
questions after k repetitions? That is, what is the probability that the entire test bank
will have been exhausted after k repetitions?

A more practical example involves drug testing. Suppose, for example that a bicycle
race has 100 contestants and consists of several stages where random samples of 20
contestants are taken at each stage and screened for banned substances. If the race
has 10 stages, what is the probability that each contestant will be tested for banned
substances at least once?

Probability of exhaustion. We will assume that we are selecting k samples of size
n from a population containing N members. We want to find the probability of the
event E that the population has been exhausted in the k samples. That is, every member
of the population has been included in at least one sample. Denote the members of the
population by x1, x2, . . . , xN . We will calculate the probability of the complementary
event EC . Let Ei be the event that xi has not been included in any of the k samples.
Then EC = E1 ∪ E2 ∪ · · · ∪ EN . By the addition law of probability and the method of
inclusion and exclusion,

P(EC) =
N∑

i=1

P(Ei ) −
∑
i< j

P(Ei ∩ E j ) +
∑

p<q<r

P(E p ∩ Eq ∩ Er ) − · · · , (1)

where the last sum consists of all terms with N − n intersections. That is because each
sample has n distinct elements and so the greatest number of elements that cannot be
included is N − n. For a particular xi , let Bi j be the event that xi is not included in the
j th sample. Then Ei = Bi1 ∩ Bi2 ∩ · · · ∩ Bik . Moreover,

P(Bi j ) =
(N−1

n

)
(N

n

)
since we must choose a sample from N elements without including xi . Since the
samples are chosen with replacement, the events Bi1, Bi2, . . . , Bik are independent,

296 c© THE MATHEMATICAL ASSOCIATION OF AMERICA


