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Exhaustive sampling and related binomial identities
Jim Ridenhour (ridenhourj@apsu.edu) and David Grimmett (grimmettd@apsu.edu),
Austin Peay State University, Clarksville, TN 37044

There are many situations that involve repeated sampling from the same set of ob-
servations. For example, suppose a professor has a test bank of 100 questions for a
particular course and randomly chooses 25 of these questions for the final exam each
semester. A persistent but not very talented student repeats the course several times.
Obviously, the student has no chance of having seen all the questions before taking
the course four times. What is the probability that the student will have seen all the
questions after k repetitions? That is, what is the probability that the entire test bank
will have been exhausted after k repetitions?

A more practical example involves drug testing. Suppose, for example that a bicycle
race has 100 contestants and consists of several stages where random samples of 20
contestants are taken at each stage and screened for banned substances. If the race
has 10 stages, what is the probability that each contestant will be tested for banned
substances at least once?

Probability of exhaustion. We will assume that we are selecting k samples of size
n from a population containing N members. We want to find the probability of the
event E that the population has been exhausted in the k samples. That is, every member
of the population has been included in at least one sample. Denote the members of the
population by x1, x2, . . . , xN . We will calculate the probability of the complementary
event EC . Let Ei be the event that xi has not been included in any of the k samples.
Then EC = E1 ∪ E2 ∪ · · · ∪ EN . By the addition law of probability and the method of
inclusion and exclusion,

P(EC) =
N∑

i=1

P(Ei ) −
∑
i< j

P(Ei ∩ E j ) +
∑

p<q<r

P(E p ∩ Eq ∩ Er ) − · · · , (1)

where the last sum consists of all terms with N − n intersections. That is because each
sample has n distinct elements and so the greatest number of elements that cannot be
included is N − n. For a particular xi , let Bi j be the event that xi is not included in the
j th sample. Then Ei = Bi1 ∩ Bi2 ∩ · · · ∩ Bik . Moreover,

P(Bi j ) =
(N−1

n

)
(N

n

)
since we must choose a sample from N elements without including xi . Since the
samples are chosen with replacement, the events Bi1, Bi2, . . . , Bik are independent,
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and so

P(Ei ) = P(Bi1 ∩ Bi2 ∩ · · · ∩ Bik) =
k∏

j=1

P(Bi j ) =
k∏

j=1

(N−1
n

)
(N

n

) =
[(N−1

n

)
(N

n

)
]k

. (2)

Consider the first term in (1). There are
(N

1

)
ways to choose i , and each P(Ei ) has the

probability given in (2), so this first term has the value

(
N

1

) [(N−1
n

)
(N

n

)
]k

.

Next, consider the second term in (1). There are
(N

2

)
ways to choose the integers i and

j between 1 and N with i < j . Also Ei ∩ E j means that neither xi nor x j is in any of
the k independent samples. But the probability that neither xi nor x j is in any of these
independent samples is

(N−2
n

)/(N
n

)
. Since the samples are independent, the probability

that neither xi nor x j is in any of the k independent samples is
[(N−2

n

)/(N
n

)]k
. Conse-

quently, the second term of the sum (1) is
(N

2

) [(N−2
n

)/(N
n

)]k
. Each of the later terms

can be analyzed in a similar manner, and therefore, (1) can be rewritten as

P(EC) =
(

N

1

)[(N−1
n

)
(N

n

)
]k

−
(

N

2

)[(N−2
n

)
(N

n

)
]k

+
(

N

3

) [(N−3
n

)
(N

n

)
]k

− · · ·

+ (−1)N−n+1

(
N

N − n

)[(N−(N−n)

n

)
(N

n

)
]k

.

Simplifying, we get

P(EC) =
(N

1

)(N−1
n

)k − (N
2

)(N−2
n

)k + (N
3

)(N−3
n

)k − · · · + (−1)N−n+1
( N

N−n

)(n
n

)k

(N
n

)k .

(3)

Then the probability of exhaustion is P(E) = 1 − P(EC).
We again consider the example where a professor has a test bank of 100 questions

and randomly chooses 25 for the final exam each semester and a persistent student
continues to repeat the course each semester. What is the probability of the event E
that the student has seen all 100 questions after taking the course k times? As we
noted earlier, the student must take the course at least four times to have any chance of
having seen all the questions. However, the probability of having seen them all in just
four repetitions is only

P(E) =
(75

25

)(50
25

)(25
25

)
(100

25

)3 = 4.66 × 10−37,

so it is extremely unlikely that this will occur. It is not hard to write a program to
calculate P(E) but care must be taken to avoid overflow and underflow errors due to
the nature of the numbers involved. The following table gives the results up to k = 30
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when N = 100 and n = 25 (the numbers have been rounded off to eight decimal
places). From this table, we see that students must be very persistent if they want at
least a fifty-fifty chance of seeing all of the questions.

k P(E) k P(E)

4 0.00000000 18 0.56269617
5 0.00000000 19 0.65090382
6 0.00000000 20 0.72545763
7 0.00000001 21 0.78656843
8 0.00000294 22 0.83553496
9 0.00011925 23 0.87411444

10 0.00150604 24 0.90413151
11 0.00890754 25 0.92726961
12 0.03159226 26 0.94498164
13 0.07868290 27 0.95846997
14 0.15278444 28 0.96870217
15 0.24836613 29 0.97644193
16 0.35514273 30 0.98228379
17 0.46257357

Associated binomial identities. If kn < N , then it is impossible to have sampled
all N members of the population with k samples of size n. Consequently, P(EC) = 1
and the numerator of (3) must equal the denominator. This yields the following family
of identities:(

N

1

)(
N − 1

n

)k

−
(

N

2

)(
N − 2

n

)k

+
(

N

3

)(
N − 3

n

)k

− · · ·

+ (−1)N−n+1

(
N

N − n

)(
n

n

)k

=
(

N

n

)k

.

Rewritten with summation notation, this is

N−n∑
j=1

(−1) j+1

(
N

j

)(
N − j

n

)k

=
(

N

n

)k

. (4)

These identities hold for any positive integer k for which kn < N . As an example,
we consider the case N = 7 and n = 2. Part of Pascal’s triangle is given below, and
the numbers involved in the identities are in boldface type. In this case, (4) holds for
k = 1, 2, and 3.

n
N 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
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Here
(N

n

) = 21. The first factors of the terms in the sum on the left side of (4) start
with

(N
1

) = 7 and progress to the right along the row for N = 7. The second factors of
these terms are raised to the kth power and begin with

(N−1
2

) = 15 and progress up the
column for n = 2. The numerical values for the identities in this example for k = 1, 2,
and 3 are given below.

7 · 15 − 21 · 10 + 35 · 6 − 35 · 3 + 21 · 1 = 21

7 · 152 − 21 · 102 + 35 · 62 − 35 · 32 + 21 · 12 = 212

7 · 153 − 21 · 103 + 35 · 63 − 35 · 33 + 21 · 13 = 213

The number of identities in the family is determined by how small n is relative to N .
For example, if N = 30 and n = 4, then (4) holds for k ≤ 7. The general relationship
of each identity with respect to Pascal’s triangle is the same as in the example. The first
and second factors for the terms on the left side of (4) are found by starting with

(N
1

)
and moving to the right for the first factor and starting with

(N−1
2

)
and moving upwards

for the second factor. The extensive literature on binomial coefficients has identities
similar to the case where k = 1:

N−n∑
j=1

(−1) j+1

(
N

j

)(
N − j

n

)
=

(
N

n

)
.

For example, the reader is referred to the first chapter of Riordan’s classic book, Com-
binatorial Identities. However, these identities do not have terms where factors are
raised to an arbitrary power k as is the case in (4). The identity (4) is interesting in that
it holds for all positive integers less than N/n. This allows us to write identities that
hold for any number of consecutive integers but not beyond. For example, if N = 1000
and n = 10, then (4) holds for all k ≤ 99 but not for any values beyond 99.
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Controlling the discrepancy in marginal
analysis calculations
Michael W. Ecker (DrMWEcker@aol.com), Pennsylvania State University, Wilkes-
Barre Campus, Lehman, PA 18627

Despite technology, we professors still love our little tricks in designing short-
cuts and problems involving “nice numbers” that lead to easily predictable outcomes.
Here’s one such shortcut that I discovered recently.

Consider the typical case of a quadratic cumulative-cost function, often encoun-
tered in Calculus I and “Business Calculus” as a differentiation application. Here a
hypothetical business produces x “widgets” for a total cost of C(x) = ax2 + bx + c.
(In order for C(x) to be increasing, we restrict our attention to 0 ≤ x ≤ −b/2a with
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