be one-third the length of CH. As CH = DH, GH is also one-third the length of DH.
Note that angle DHG is a right angle and also that vertical angles DGH and CGE are
equal in measure. Hence, from those facts and right triangle DHG, the tangent of angle

CGE = the tangent of angle DGH = DH/GH = 3. ]
A B
H
E F
G
C D
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A Bug Problem

Aaron Melman (amelman@scu.edu), Santa Clara University, Santa Clara, CA 95053

Imagine a vessel, obtained by revolving the function y = x? around the y-axis. On
the wall on the inside of this vessel sits a bug, which becomes fairly unhappy when
a liquid of your choice is poured into the vessel at a constant rate of p liters/second.
Naturally, the bug will crawl upward to avoid getting its feet wet. If it is crawling along
the curve y = x? in the xy-plane, how fast does it have to crawl to outrun the rising
tide of the liquid? The vessel may be considered to be as large as necessary.

The solution to this problem is not difficult, but it requires familiarity with volumes,
arc length, the fundamental theorem of calculus, and the chain rule. As such, it is a
good review problem for a calculus class. Moreover, the problem can be generalized
easily enough for students to explore.

To solve the problem, let us first express the volume of the liquid as a function
of time. Since the flow rate is constant, this is simply V (¢#) = pt, where we have set
the initial time fy = 0. To find the height in the vessel that this volume corresponds
to, we compute the volume ¢ (/) of a vessel of height 4. An easy way to do this is
to use the inverse function x = ,/y and circular cross-sections. The result is ¢ (h) =

foh Jr(\/i)2 dy = mh?/2. Therefore, the height of the rising liquid is determined by

pt = wh*/2, or h(t) = «/2pt/m. On the other hand, the bug is crawling along the
curve x = ,/y, and, assuming that it starts from a height o > 0, the distance it covers

is given by
h(1) h(t)
L(t)—/ V1I+ (Y ))zdy—/
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Its speed is the derivative with respect to time of L(¢) for which we need to use the
fundamental theorem of calculus and the chain rule: dL/dt = (1 + 1/4h)"/?(dh/dt).
We use implicit differentiation on pt = mwh?/2 to obtain dh/dt = p/(mh), so that the
minimum speed of the bug, necessary to keep pace with the rising liquid, is given by

dL 1\"? 1 172 12
C=(1+4) Z=(1+7/) ()
dt 4h mh 4\ 2pt 2t

Clearly, as the vessel opens up, the rate at which the liquid rises slows down, giving
our poor bug the opportunity to catch its breath. The discontinuity at = 0 is due to
the discontinuity of the liquid flow rate, which is piecewise constant since it is zero for
t <0.

Of course, this problem can be modified by choosing different functions and flow
rates, but as we already mentioned, it is easily generalized. If the flow rate p is a func-
tion of time, then the volume of the liquid after time ¢ is given by V (¢) = fot p(s)ds
and dV /dt = p(t). If the function which generates the vessel is defined by x = f(y),
then the function ¢ (h) is given by fhho wf2(y)dy withdg/dh = m f*(h). At time ¢, the
volume of the liquid corresponds to the height of the liquid via V (t) = ¢ (h), which

means that dV /dt = (d¢ /dh)(dh/1). Since L(1) = [,/ /T+ f2(y) dy, we obtain

2
dL _dLdh _ q—osdVide 15 770

dr dndr do/dn =~ array PO
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In other words, the speed is the product of a geometric quantity and the flow rate of
the liquid. The speed can also be expressed as an explicit function of time, provided
we can solve V(1) = ¢ (h) explicitly for A.

More variants of this problem can be obtained by defining the revolving function
differently, by computing the volume with a different technique, etc. One favorite func-
tion of mine is y = —1/,/x because revolving that curve, e.g., for 0 < x < 1, around
the y-axis generates an infinite vessel of finite volume.

o

Streaks and Generalized Fibonacci Sequences

Shahla Ahdout (shahla.ahdout@liu.edu), C.W. Post Campus of Long Island Univer-
sity, Brookville, NY 11548; Sheldon Rothman (sheldon.rothman @liu.edu), C.W. Post
Campus of Long Island University, Brookville, NY 11548, and Helen Strassberg
(strassberg@york.cuny.edu), York College, CUNY, Jamaica, NY 11451

While prolific rabbits may have been the inspiration for Fibonacci when he intro-
duced his renowned sequence, mathematicians, both professional and amateur, find it
in many other situations. In this note, we look at how it and a generalization arise in
the number of strings of n events having k straight successes.

More formally, we call a sequence of n trials whose outcomes are either successes
(S) or failures (F) an n-string, and k successes in a row we call a k-streak. (Note
that streaks only refer to successes.) It turns out that Fibonacci’s famous sequence of
numbers f, appears in a formula for the number of 2-streaks in n-strings. Furthermore,
there are other Fibonacci-like sequences that appear in the counting of strings with k
streaks.

We let S(n, k) denote the number of n-strings that contain a k-streak and F(n, k)
the number of these in which the only k-streak occurs at the end. For example, there
are eight 4-strings with a 2-streak, but in only two of these, SF'SS and FFSS, is there
no 2-streak until the end.

Note that forn < k, S(n, k) = 0, while forn = k, S(n, k) = 1. Table 1 shows some
other values of S(n, k).

Table 1. Numbers of strings with streaks

n 2 3 4 5 6 7
1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 3 1 0 0 0 0
4 8 3 1 0 0 0
5 19 8 3 1 0 0
6 43 20 8 3 1 0
7 94 47 20 8 3 1
8 201 107 48 20 8 3
9 423 238 111 48 20 8

Focusing our attention on the first column, in looking for a pattern in these
numbers—in particular, a relationship between consecutive entries—we find this:
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