316 MATHEMATICS MAGAZINE

Two Irrational Numbers From the Last
Nonzero Digits of n! and n”
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We begin by looking at the pattern formed from the last (that is, units) digit in the
base 10 expansion of n". Since 1! = 1, 22 = 4, 33 = 27, 4* = 256, and so on, we
can easily calculate the first few numbers in our pattern to be 1,4,7,6,5,6,3,6....
We construct a decimal number N = 0.dd,ds . . .d, ... such that the n'™ digit d, of
N is the last (i.e. unit) digit of n"; that is, N = 0.14765636. ... In a recent paper [1],
R. Euler and J. Sadek showed that this N is a rational number with a period of twenty
digits:

N = 0.14765636901636567490.

This is a nice result, and we might well wonder if it can be extended. Indeed, Euler
and Sadek [1] recommend looking at the last nonzero digit of n! (If we just looked at
the last digit of n!, we would get a very dull pattern of all Os, as n! ends in O for every
n=>5.)

With this is mind, let’s define Inzd(A) to be the last nonzero digit of the positive in-
teger A; it is easy to see that Inzd(A) = A/10' mod 10, where 10 is the largest power
of 10 that divides A. We wish to investigate not only the pattern formed by Inzd(#!), but
also the pattern formed by Inzd(n"). In accordance with Euler and Sadek [1], we define
the factorial number, F = 0.d\dyxd5 . . . d,, . .. to be the infinite decimal such that each
digit d, = Inzd(n!); similarly, we define the power number, P = 0.d1dyd5 . . .d,, . .. by
d, = Inzd(n"™). We ask whether these numbers are rational or irrational.

Although the title of this article gives away the secret, we’d like to point out that
at first glance, our factorial number F exhibits a suprisingly high degree of regularity,
and a fascinating pattern occurs. The first few digits of F are easy to calculate:

=1  5'=120 10! = 3628800
=2 6=720 11! = 39916800
31=6  7!=5040 12! = 479001600
41=24 8! =40320 13! = 6227020800
91 =362880... 14! = 87178291200

Reading the underlined digits, we have
F =0.1264 22428 88682.. . ..
Continuing along this path, we have (to forty-nine decimal places)
F =0.1264 22428 88682 88682 44846 44846 88682 22428 22428 66264 . . ..
It is not hard to show that (after the first four digits) F' breaks up into five-digit blocks

of the form x x 2x x 4x, where x € {2, 4, 6, 8}, and the 2x and 4x are taken mod 10.
Furthermore, if we represent these five-digit blocks by symbols (2 for 22428, 4 for
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44846, 6 for 66264, 8 for 88682, and 1 for the initial four-digit block of 1264), we
have

F=0i 2 8 8 4 4 8 2 2 6

Grouping these symbols into blocks of five and then performing more calculations
(with the aid of Maple) give us F to 249 decimal places:

F =0.12884 48226 24668 48226 48226 86442 24668 62884 24668 24668 . ...

The reader will notice additional patterns in these blocks of five symbols (twenty-
five digits). In fact, such patterns exist for any block of size 5'. However, a pattern is
different from a period, and doesn’t imply that our decimal F is rational. Consider the
classic example of 0.1 01 001 0001 00001 000001 ..., which has an obvious pattern
but is obviously irrational. It turns out that our decimal F is also irrational, as the
following theorem indicates:

THEOREM 1. Let F = 0.didyd5...d, ... be the infinite decimal such that each
digit d,, = Inzd(n!). Then, F is irrational.

We will prove this, but first note that our power number, P, might also seem to
be rational at first glance. P is only slightly different from Euler and Sadek’s rational
number N, as seen here:

N = 0.14765 63690 16365 67490 14765 63690 16365 67490. ..
and P =0.14765 63691 16365 67496 14765 63699 16365 67496. ..

(Again, calculations were performed by Maple.) Despite this striking similarity be-
tween P and N, it turns out that P, like F, is irrational:

THEOREM 2. Let P = 0.didyd;...d, ... be the infinite decimal such that each
digit d, = Inzd(n"). Then, P is irrational.

Before we begin with the (slightly technical) proofs, let us pause to get a feel for
why these two numbers must be irrational. There is no doubt that both F and P are
highly regular, in that both exhibit a lot of repetition. The problem is that there are
too many patterns in the digits, acting on different scales. Taking P, for example, we
note that there is an obvious pattern (as shown by Euler and Sadek in [1]) repeating
every 20 digits with 11, 22,33, ...,9%and 11!, 1212, ..., 19, but this is broken by a
similar pattern for 10'%, 20%, ..., 90°° and 110'°. .. 190!, which repeats every 200
digits. This, in turn, is broken by another pattern repeating every 2000, and so on. A
similar behaviour is found for F, but in blocks of 5, 25, 125, and so on, as mentioned
above. So, in vague terms, there are always new patterns starting up in the digits of P
and of F, and this is what makes them irrational.

Are there some simple observations that we can make about P and F to help us to
prove our theorems? To start with, we might notice that every digit of F (except for
the first one) is even. Can we prove this? Yes, and without much difficulty:

LEMMA 1. Forn > 2, then Inzd(n!) is in {2, 4, 6, 8}.

Proof. The lemma is certainly true for n = 2,3, 4. For n > 5, we note that the
prime factorization of n! contains more 2s than 5s, and thus even after taking out all
the 10s in n!, the quotient will still be even. To be precise, the number of 5s in #! (and
thus the number of trailing zeros in its base-10 representation) is es = Y .-, [n /Si],

which is strictly less than the number of 2s, e; = Y., [n/2] (here, [-] represents the
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greatest integer function). Hence, n!/10% is an even integer not divisible by 10, and so
Inzd(n!) = n!/10mod 10, which must be in {2, 4, 6, 8}. [ |

Another helpful observation is that the Inzd function is at least sometimes multi-
plicative. For example,

Inzd(12) - Inzd(53) =2-3 =6,
and Inzd(12 - 53) = Inzd(636) = 6.

However, we note that at times this would-be rule fails:

Inzd(15) - Inzd(22) =5 -2 = 10,
yet Inzd(15 - 22) = Inzd(330) = 3.

So, we can only prove a limited form of multiplicativity, but it is useful none the less:

LEMMA 2. Suppose a, b are integers with Inzd(a) # 5, Inzd(b) # 5. Then, Inzd is
multiplicative; that is, Inzd(a - b) = Inzd(a) - Inzd(b) mod 10.

Proof. Let x’ denote the integer x without its trailing zeros; that is, x’ = x /10,
where 10° is the largest power of 10 dividing x. (Note that Inzd(x) = x’ mod 10.) By
hypothesis, @’ and &’ are both % 0 mod 5, and so (a - )’ # O mod 5 and so (a - b) =
a’ - b'. Thus,

Inzd(a - b) = Inzd((a - b)") = Inzd(a’ - ') = a’ - b’ mod 10, while
Inzd(a) ~1nzd(b) = Inzd(a’) - Inzd(b") = (¢’ mod 10) - (b’ mod 10).

* The two are clearly congruent mod 10. |

We are now ready to prove Theorem 1, to show that F is irrational. The proof is a
little technical; it proceeds by assuming that F has a repeating decimal expansion with
period Ag, then choosing an appropriate multiple of Ao and an appropriate digit d, in
order to arrive at a contradiction.

Proof of Theorem 1: Suppose F is rational, and thus eventually periodic. Let Ao be
the period, so that for every n sufficiently large, then d, = dy,. Write Ao = jf -K
such that 5/ K (we acknowledge that K could be 1) and let A =2' - Ao = 10" - K.
Then, Inzd(A) = Inzd(K), and since 5/ K, then 10/ K and so Inzd(K) = K mod 10.
Note also that Inzd(21) = 2K mod 10. Choose M sufficiently large so that both of the
following are true: Inzd(10” + 1) = Inzd(}) (this can easily be done by demanding
that 107 > 1), and d, = d,1;, foralln > M. Finally, letd = Inzd((10” — 1)!); since
10M! = (10" — 1)! - 10, then d also equals Inzd(10M!).

Since A is a multiple of the period A, if we let A = 10 — 1 + X and B = 10% —
1+ 2, then

d = Inzd((10 — 1)!) = Inzd(A!) = Inzd(B!)
and d = Inzd(10™!) = Inzd((A + 1)!) = Inzd((B + 1)!).

We will find our contradiction in the last two terms in the above equation. By Lemma
1,d € {2,4,6, 8}, and so Inzd(A!) # 5. Also, since Inzd(A + 1) = Inzd(10” + 1) =
Inzd(A) = K mod 10, we know that Inzd(A + 1) # 5. Thus, we can apply Lemma 2
to Inzd(A! - (A + 1)) to get

d = 1nzd((A + 1)!) = Inzd(A!) - Inzd(A + 1) =d - K mod 10.
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Likewise, working with B, we find

d = Inzd((B + 1)!) = Inzd(B!) - Inzd(B + 1) = d - 2K mod 10.

Combining these two equations, we get d(1 — K) = d(1 —2K) = 0 mod 10. Since
5/)d, this implies that 5|(1 — K) and 5|(1 — 2K), which is a contradiction. Thus, there
can be no period A¢ and so F is irrational. [ |

We now turn our attention to the power number P derived from the last nonzero
digits of n”. This part was more difficult, but a major step was the discovery that the
sequence Inzd(100'%), Inzd(200%%), Inzd(300°®) ... was the same as the sequence
Inzd(100*), Inzd(200%), Inzd(300%) . . . . This relies not only on the fact that 4/100 but
also on the easily proved fact that a”? = a®** mod 10 for b > 0, used in the following
lemma:

LEMMA 3. Suppose 100 | x. Then, Inzd(x*) = (Inzd x)* mod 10.

Proof. Asin Lemma 2, let x’ denote the integer x without its trailing zeros; that is,
x' = x/10°, where 10/ is the largest power of 10 dividing x. Now,

Inzd(x*) = Inzd((10°x")'%*")
— lnzd((10i~10ix’)(x/) 10 -x')
= Inzd((x")'*).
Since 10fx', then 10/ (x")'%*', and so
Inzd(x*) = (x')'%* mod 10.

Since 100 | x, then 4 | 10’ - x’, and since (x")" = (x')"** mod 10 for every positive 7,
we can repeatedly reduce the exponent of x” by 4 until we have

Inzd(x*) = (x)* mod 10
= (Inzd x)* mod 10. [ |

With Lemma 3 at our disposal, the proof of Theorem 2 is now fairly easy.

Proof of Theorem 2: Again, we argue by contradiction. Suppose P is rational. Let
Ao be the eventual period, and choose j sufficiently large such that 10/ > 200 - Ao and
such that

Inzd((107 + nie)'? +%0) = Inzd((107)')
for every positive n. Choosing n = 200, we get
Inzd((107 4 20040)'% +20%%0) — 1nzd((10/)'?').

We reduce the left side of the above equation by Lemma 3 (note that Inzd(10/ +
200X9) = Inzd(2Xy)), and the right side is obviously 1, so we have

(Inzd 210)* = 1 mod 10

Note that Inzd(24¢) can only be 2, 4, 6, or 8, and raising these to the fourth power
mod 10 gives us the contradiction 6 = 1. Thus, P is irrational. [ |
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The obvious next question is far more difficult: Are F' and P algebraic or transcen-
dental? I suspect the latter, but it is only a hunch. Perhaps some curious reader will
continue along this interesting line of study.
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