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We begin by looking at the pattern formed from the last (that is, units) digit in the 
base 10 expansion of n'". Since 11 = 1, 22 = 4, 33 = 27, 44 = 256, and so on, we 
can easily calculate the first few numbers in our pattern to be 1, 4, 7, 6, 5, 6, 3, 6 .... 
We construct a decimal number N = O.dld2d3 ... dn ... such that the nth digit dn of 
N is the last (i.e. unit) digit of nn; that is, N = 0.14765636 .... In a recent paper [1], 
R. Euler and J. Sadek showed that this N is a rational number with a period of twenty 
digits: 

N = 0.14765636901636567490. 

This is a nice result, and we might well wonder if it can be extended. Indeed, Euler 
and Sadek [1] recommend looking at the last nonzero digit of n! (If we just looked at 
the last digit of n!, we would get a very dull pattern of all Os, as n! ends in 0 for every 
n > 5.) 

With this is mind, let's define lnzd(A) to be the last nonzero digit of the positive in- 
teger A; it is easy to see that lnzd(A) _ A/IO1 mod 10, where lOi is the largest power 
of 10 that divides A. We wish to investigate not only the pattern formed by lnzd(n!), but 
also the pattern formed by lnzd(n'2). In accordance with Euler and Sadek [1], we define 
the factorial number, F = O.dld2d3 ... d,, . . . to be the infinite decimal such that each 
digit dn = lnzd(n!); similarly, we define the power number, P = 0.did2d3 ... d,,... by 
dn = lnzd(n'"). We ask whether these numbers are rational or irrational. 

Although the title of this article gives away the secret, we'd like to point out that 
at first glance, our factorial number F exhibits a suprisingly high degree of regularity, 
and a fascinating pattern occurs. The first few digits of F are easy to calculate: 

1! = 1 5! = 120 10! = 3628800 
2!=2 6!=720 11!=39916800 
3! = 6 7! = 5040 12! = 479001600 
4! = 24 8! = 40320 13! = 6227020800 

9! = 362880 ... 14! = 87178291200 

Reading the underlined digits, we have 

F = 0.1264 22428 88682.... 

Continuing along this path, we have (to forty-nine decimal places) 

F = 0.1264 22428 88682 88682 44846 44846 88682 22428 22428 66264.... 

It is not hard to show that (after the first four digits) F breaks up into five-digit blocks 
of the form x x 2x x 4x, where x E {2, 4, 6, 8), and the 2x and 4x are taken mod 10. 
Furthermore, if we represent these five-digit blocks by symbols (2 for 22428, 4 for 
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Likewise, working with B, we find 

d = lnzd((B + 1)!) = lnzd(B!) lnzd(B + 1) _ d 2K mod 10. 

Combining these two equations, we get d(I - K) -d( - 2K) _ 0 mod 10. Since 
51d, this implies that 51 (1 - K) and 51(1 - 2K), which is a contradiction. Thus, there 
can be no period XO and so F is irrational. A 

We now turn our attention to the power number P derived from the last nonzero 
digits of nn. This part was more difficult, but a major step was the discovery that the 
sequence lnzd(100100), lnzd(200200), lnzd(300300) ... was the same as the sequence 
lnzd(1004), lnzd(2004), lnzd(3004) .... This relies not only on the fact that 41100 but 
also on the easily proved fact that ab- ab+4 mod 10 for b > 0, used in the following 
lemma: 

LEMMA 3. Suppose 100 I x. Then, lnzd(xx) -(lnzdx)4 mod 10. 

Proof. As in Lemma 2, let x' denote the integer x without its trailing zeros; that is, 
x= x/10I, where IO' is the largest power of 10 dividing x. Now, 

lnzd(xx) = lnzd((10ix')1Ox') 

= lnzd((l0o10Oix')(x) 1Oi x') 

= lnzd((x) lOx'). 

Since 1OXx', then lOI((x')lox', and so 

lnzd(xx) _ (x')loix' mod 10. 

Since 100 I x, then 4 1 10- x', and since (X')n = (X')n+4 mod 10 for every positive n, 
we can repeatedly reduce the exponent of x' by 4 until we have 

lnzd(xx) (x')4 mod 10 

_(lnzdx)4mod10. U 

With Lemma 3 at our disposal, the proof of Theorem 2 is now fairly easy. 

Proof of Theorem 2: Again, we argue by contradiction. Suppose P is rational. Let 
XO be the eventual period, and choose j sufficiently large such that 10i > 200 0o and 
such that 

lnzd((10j + nXO) 10n+fl0) = lnzd((IOi) 1oj 

for every positive n. Choosing n = 200, we get 

lnzd((10j + 200XO) 10+200Xo) = lnzd((10)1O ). 

We reduce the left side of the above equation by Lemma 3 (note that lnzd(I0J + 
200XO) = lnzd(2X0)), and the right side is obviously 1, so we have 

(lnzd 2XO)4 1 mod 10 

Note that lnzd(2X0) can only be 2, 4, 6, or 8, and raising these to the fourth power 
mod 10 gives us the contradiction 6 = 1. Thus, P is irrational. A 
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