VOL. 69, NO. 2, APRIL 1996 133
Thus

S(a)=|b—al+lc—dl
>|f=bl+|f=al/2+|f=cl+|f—al/2
=5(f).

Similarly S(b) > S(f), S(c) > S(f). This shows that S does not attain its minimum at
any vertex. It follows that S must attain its minimum at some interior point R; and
then, by the Proposition, DS(r) = 0. But F is the unique point for which DS(r) = 0;
so R=F.

Case 2. Suppose, alternatively, that one of the angles A, B, C is not less than 120°.
Then there can be no point R such that RA, RB, RC make equal angles with each
other; so S cannot attain its minimum at an interior point, and must therefore attain
its minimum at a vertex. Since the longest side of the triangle is the one opposite the
largest angle, we see that S attains its global minimum at the vertex of the largest
angle.

We have demonstrated the following.

THEOREM. If all the angles of the triangle ABC are less than 120° then the Fermat
point F is the point such that FA, FB, FC meet at 120° otherwise it is the vertex of
the largest angle.

Acknowledgements 1 am grateful to Messrs. M. Smith and 1. Moss for bringing this topic to my
attention, to Dr. A, S, Wassermann and Professor Z. Rubinstein for helpful discussions, and to the Institute
of Mathematics, Hebrew University of Jerusalem, for affording me shelter and hospitality during a
sabbatical year.

REFERENCES

1. R. Courant and H. Robbins, What is Mathematics?, Oxford University Press, Oxford, UK, 1941.

2. Mowaffaq Hajja, An advanced calculus approach to finding the Fermat point, this MAGAZINE Vol. 67,
1994, 29-34.

3. J. Pottage, Geometric Investigations, Addison-Wesley, Reading, MA, 1983.

Determinants of the Tournaments
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In a round-robin tournament with n players, each player plays every other player in a
game where ties are not possible. The results of the tournament can be summarized
by an n by n tournament matrix A whose (i, j) entry is 1 if i beat j,— 1 if j beat ,
and 0 if i equals j. The matrix below represents a tournament where, for example,
player 1 beat players 2 and 4, but lost to players 3 and 5. The authors confess that the
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paper was motivated by word play with the hope of determining that determinants
and tournaments have more in common than their names suggest. We discovered that
in fact the concepts are almost independent, but do provide an opportunity to
illustrate several powerful types of determinant arguments.

0 1 -1 1 -1
-1 0 1 1 -1
1 -1 0 1 1
-1 -1 -1 0 1
1 1 -1 -1 0

Proposition 1. Let A be the matrix representation of a tournament with n players.
The determinant of A is zero if, and only if, n is odd.

Proof. Any tournament matrix A is necessarily skew-symmetric, ie., A= —AT.
Therefore, det(A) = det(—AT) =(—1)"det(AT) =(=1)"det(A). When n is odd,
det( A) = —det( A) and must therefore be zero.

For the case where n is even, recall that to compute the determinant, we can
determine it by summing products of the terms in it according to the formula:

det( A) = Z Sign( P)"l. p(l)a2. pQ) Ty, p(n)
pesn

where S, is the set of all permutations on n elements. We shall show that this
determinant is odd, and hence nonzero. Since each a; ; s 0,1, or —1, so is the
product sign(play pay@s, pay @, pnye I p(i) =i for some i, then a; ,;, is 0, and
hence sign(p)a; ,1)as, y@ *** @, puy 15 0. So we only need to take the sum over all
permutations that do not map any element to itself, since all other permutations
contribute zero to the sum. Since for each such permutation p, sign(pla, ,,a,, p@)
@, ,my 15 1 or —1, we can calculate det(A) modulo 2, simply by counting the
number of derangements, permutations that do not map any element to itself.
By the principle of inclusion-exclusion, there are

E-'m-al(7)

derangements. Since (n —i)! is even for i <n — 2, the previous summation has the
same parity as

(—1)"“1!(nﬁl) +(—1)“01(;‘)= -n-1

which is odd. Thus, det( A) is nonzero.

Here is another simple proof for the case when n is even. Since det( A)mod2 is
unaffected by changing (—1)s into 1’s, it suffices to compute the parity of the
determinant of the matrix

01 1 1
1 0 1 1
J-1= 1 1 0 1
111 - 0

where I is the n by n identity matrix, and ] is the n by n matrix consisting entirely of
Is.
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For any matrix C, we have
C¥=A7=(C-1)¥=(A—-1)%,

so the eigenvalues of J — I are all one less than the eigenvalues of .

The rank of ] is 1, so 0 is an eigenvalue with multiplicity n — 1. Since n is also an
eigenvalue for | (with eigenvector [L,1,..., 1]7), its multiplicity must be 1. So J —1
has the eigenvalue —1 with multiplicity n —1 and the eigenvalue n—1 with
multiplicity 1. Hence the determinant of ] — I equals the product of its eigenvalues,
namely (—1)*"~Y(n — 1), which is odd.

Yet another way to compute det(J —1I) is by performing elementary row and
column operations that do not affect the determinant. (This argument can be applied
to any square matrix with one number on the main diagonal and another number
everywhere else. See for instance, [1].) Adding every row of J —1I (except the first) to
the first row gives us the matrix

n—-1 n—-1 n—-1 -+ n-—1
1 0 1 - 1
1 1 0 - 1
1 1 1 .- 0

After subtracting the first column of this matrix from all the other columns we
obtain the lower triangular matrix below with determinant (=1)"""(n —1)

n=1 0 0 - 0
1 -1 0 = 0
1 0 -1 = 0
1 0 0 - =1

In fact, a little more can be said about the “zeroness” of det(A).

Proposition 2. The nullspace of a tournament matrix A has dimension zero if n is
even, and dimension one if n is odd.

Proof. If n is even, then A is nonsingular and the proposition follows. For odd n,
let a@,,...,a, be the columns of A. Let C be the (n — 1) X (n — 1) matrix which
results from deleting the last row and column from A. This matrix then corresponds
to some tournament on n — 1 vertices. Hence, since n — 1 is even, the above result
implies that C is nonsingular. The columns of this matrix are therefore linearly
independent. It follows that the vectors a) -*- @,_, are linearly independent, since
they are the columns of C with an additional component. So the rank of A is at least
n— 1. If A had rank n, it would be nonsingular, which we know to be false. So the
rank of A is n — 1, and the dimension of its nullspace is therefore 1.

Acknowledgements. Thanks to Professor R. A. Mena for suggesting the eigenvalue proof of Proposi-
tion 1, and the anonymous referees for many valuable suggestions.
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