The Matrix of a Rotation

Roger C. Alperin, San Jose State University, San Jose, CA

What is the matrix of the rotation of R^3 about a unit axis \mathbf{p} through an angle θ ? Since a rotation has a fixed axis (or eigenvector of eigenvalue 1) and rotates the plane perpendicular to \mathbf{p} by angle θ , the matrix is easy to determine if we change to a convenient basis; however, it is not well known that there is a simple expression for the matrix in the standard basis which depends only on the coordinates of \mathbf{p} and the angle θ . The formula is obtained without changing bases. Furthermore, this formula can be useful in coding the effect of a rotation in computer graphics. The derivation of this formula was motivated by the close relationship between rotations and quaternions.

For two vectors \mathbf{v} and \mathbf{w} we use the notation $\mathbf{v} \cdot \mathbf{w}$ for the standard inner product and $\mathbf{v} \times \mathbf{w}$ for the cross product. Consider the linear transformation of R^3 given by $P(\mathbf{q}) = \mathbf{p} \times \mathbf{q}$ where \mathbf{p} is a unit vector.

Proposition 1. $P^2(\mathbf{q}) = -\mathbf{q} + (\mathbf{p} \cdot \mathbf{q})\mathbf{p}$. Thus $I + P^2$ is the projection operator along the unit vector \mathbf{p} .

Proof. The first part follows easily by using the triple product formula $\mathbf{p} \times (\mathbf{q} \times \mathbf{r}) = (\mathbf{p} \cdot \mathbf{r})\mathbf{q} - (\mathbf{p} \cdot \mathbf{q})\mathbf{r}$. The second statement follows easily from the first part and the definition of an orthogonal projection.

Proposition 2. The rotation of R^3 about an axis **p** of unit length by an angle θ is given by

$$L(\mathbf{q}) = \mathbf{q} + (\sin \theta) P(\mathbf{q}) + (1 - \cos \theta) P^{2}(\mathbf{q}).$$

Proof. To see this, we show that this linear transformation has the geometric properties of a rotation as described in the first paragraph. The vector \mathbf{p} is left fixed since $P(\mathbf{p}) = P^2(\mathbf{p}) = 0$. It follows from the definition of L and Proposition 1 that if \mathbf{q} is perpendicular to \mathbf{p} then $L(\mathbf{q}) = \cos\theta\mathbf{q} + \sin\theta(\mathbf{p} \times \mathbf{q})$. Moreover if \mathbf{q} is also of unit length then $\mathbf{p} \times \mathbf{q}$ is of unit length and also perpendicular to \mathbf{p} ; hence

$$L(\mathbf{p} \times \mathbf{q}) = \cos \theta(\mathbf{p} \times \mathbf{q}) + \sin \theta(\mathbf{p} \times (\mathbf{p} \times \mathbf{q})) = \cos \theta(\mathbf{p} \times \mathbf{q}) - \sin \theta \mathbf{q}.$$

Thus the plane perpendicular to **p** is rotated by angle θ . It follows now that all of R^3 is rotated about the axis **p** by angle θ and thus L describes the rotation.

We can now easily write the matrix of $L = I + (\sin \theta)P + (1 - \cos \theta)P^2$ in terms of the standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$. Suppose $\mathbf{p} = (a, b, c)^t$; then P is easily computed: $P(\mathbf{e}_1) = (0, c, -b)^t$, $P(\mathbf{e}_2) = (-c, 0, a)^t$ and $P(\mathbf{e}_3) = (b, -a, 0)^t$. Furthermore, the matrix of the projection $I + P^2$ is the matrix product \mathbf{pp}^t . Thus the matrix of L is

$$I + (\sin \theta) \begin{bmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{bmatrix} + (1 - \cos \theta) \begin{bmatrix} a^2 - 1 & ab & ac \\ ab & b^2 - 1 & bc \\ ac & bc & c^2 - 1 \end{bmatrix}.$$

.