It follows, therefore, that

_|cos® —sind

o sin @ cos @ |’

which is the rotation matrix mentioned in the introduction. So we have established
the rotation property of rotation matrices.

Trigonometric consequences. Now that we have the desired rotation property we
can use it to derive the familiar angle addition formulas for the sine and cosine
functions.

Theorem. cos(a+ B)=cosacosPB —sinasinB and sin(a + B) =sin acos B +
cos a sin f3.

Proof. Letv= [‘;’: g]. Then A v is the result of rotating v by «, and therefore

o

_ | cos(a+B)
| sin(a +B)

Furthermore,

Ay= [COSa —sina][cosB]

sin « cos « || sin B

cos a cos B — sin a sin B
sinacos B +cosasinf |’

Thus

cos(a + B)
sin(a + )

cos a cos B — sin a sin B
" |sinacos B+ cosasing |’

By comparing the corresponding components of the vectors in this last equation we
have the desired results.

A Geometric Interpretation of the Columns of the (Pseudo)inverse of A
Melvin J. Maron, University of Louisville, KY 40292 and Ghansham M. Manwani,
Universidade do Amazonas, Brazil

This capsule describes how the columns of the (pseudo)inverse of a matrix 4 can
be used to provide useful geometric information about the rows of A4. Specifically,
it shows how the ith column of the (pseudo)inverse of A can be used to project the
ith row of A on the span of the other rows (see Figure 1). We begin with an
elementary proof of the important special case for which the row space of 4 spans
all of Euclidean n-space E,,.
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span{row; 4 : j # i} /

Figure 1

Theorem 1. Let A be a nonsingular n X n matrix. Embed the rows of A in E,,,
viewed as column vectors, via the natural identification

row; A — a;, = (row,.A)T, where ( )T denotes transpose.

Then for any i =1,2,...,n, the prbjection p; of a; on span {aj: j #1i} is given by

p,=a,—d;, where d,= scol, A~

llcol, A~ 1|
Thus, the distance (along col,A™') from a, to spanfa;: j# i} is |ld,|l = 1/llcol, A7,

Proof. If we let «; denote the jth column of A~ ! for j=1,2,...,n, then both
{a})_, and {a}"_, are bases for E,. In fact, they are dual bases to each other
under the Euclidean inner product ¢ -, - ) because, since A4~ ' =1,

(a;,a;) = §;;, where §,; is the Kronecker delta function. (1)

Fix any i, 1 <i <n. By (1), «; is orthogonal to the subspace
S;=span{a,: j #i}.

So the n linearly independent vectors in S; U {a,} are a basis for the row space of
A. Moreover, any x in the row space of 4 has the unique representation

(x,@;)

x=s+vya;, where s €, andy=W
Q;

[1, Theorem 5.3.5, p. 240]. In particular, since {a,, ;> = 1 by (1), we have
1
a,=p,+d,, where p, € S, and di:wai’ (2)
«;

which is what we set out to prove.

The vectors p; and d, are, respectively, the components of a; on and orthogonal
to S; (see Figure 1). So the relative lengths [jp, ||, ld;|l, and [la,|| can be used to assess
the extent to which row;4 is linearly dependent on the other rows of A4. To
illustrate this, let us project the (transposed) second row of the nonsingular matrix

0 2 4
A=| 2 2 9
1 -1 0

74 THE COLLEGE MATHEMATICS JOURNAL



on S, = the span of the (transposed) first and third rows. To get d,, we first solve
Aa=e, for ay=col,A7'=[-2 -2 1]” and then use (2):

d ! PR B NS
= ———¢0 =—|-21];so =—.
2 llcol, A~ 1|2 2 9 1 )

The desired projection of a, = (row, A)” on S, is then easily obtained as

20 1]-2] 20]1 20
Pr=a,—dy= 2| -5l =2 =1 ;so||p2l|=7\/'2_.
9 1 4

Since [ld,|| is small compared to [la,||= V89 (or, equivalently, since [ld,|l and [la,l|
are both 9.43 to two decimal places), we see that row 2 of A is nearly linearly
dependent on rows 1 and 3.

If a matrix A is “nearly singular” in this sense, then it is likely to be ill
conditioned, that is, small errors in 4 or b can produce disproportionately large
errors in the solution of the linear system Ax=b. Theorem 1 can thus provide
useful insight when examining errors that occur in solving linear n X n systems.

The proof of Theorem 1 shows that the result is an immediate consequence of
(1). This suggests that Theorem 1 can be generalized to matrices A having a right
inverse. In fact, the result does generalize to m X n matrices A4 if one replaces
A~ by the n X m pseudoinverse of A4, which we denote by A*. A highly readable
account of pseudoinverses is given in Appendix A of [2]. The discussion there
shows the following:

Property 1. For any A, the columns of 4" lie in the row space of A.

Property 2. If A is m X n and has rank m, then A4*=1,.

Consequently, with only minor notational changes, the proof given for Theorem 1
can be modified to prove the following more general result.

Theorem 2. Let A be an m X n matrix of rank m and let a, denote (row; A)*. Then
for any i =1,2,...,m, the projection p; of a, on S;=span{a;: j # i} is given by

p,=a,—d;, whered, = *

—————col,; 4
llcol, A *]|?
where A* denotes the pseudoinverse of A.

Theorem 2 can provide useful insight when performing factor analysis or in
other situations where one might want to know if a vector in Euclidean space
“nearly” lies in the span of a set of vectors that may not be a basis.
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