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While it can be difficult, or even impossible, to find exact eigenvalues of an n X n
matrix in general, we will illustrate a simple method that works when the rank of
the matrix is small. This technique can be used for student discovery in a linear
algebra class; an instructor can assign a sequence of exercises requiring students to
solve special cases, make conjectures about generalizations, and then prove their
conjectures.

The eigenvalues of a matrix A are the zeroes of its characteristic polynomial,
det(AI — A), which can be written as

P(A)=A"—c, A" Ve, A =+ (—1) ¢, (1)
It is well known (see, for example, [3, p. 251]) that the coefficients ¢,_, and ¢, in
(1) are, respectively, the trace of A (the sum of its diagonal entries) and the
determinant of A. In fact, all coefficients in (1) can be expressed in terms of
k-rowed principal minors of A. (A k-rowed principal minor of an n X n matrix A
is the determinant of a k& X k& submatrix of A whose entries, &, j» have indices 7 and
7 that are the elements of the same k-element subset of {1,2,..., 7}.)

For example, if

1 2 3
B=14 5 6|,
7 8 9

then:
the 1-rowed principal minors of B are the diagonal entries 1,5, 9,
the 2-rowed principal minors of B are

1 2(_ 5 6|_ _ 1 3|_ _
det[4 5]— 3, det[S 9] 3, det[7 9] 12,

and the only 3-rowed principal minor of B is det( B) = 0.
The following theorem is the key to the subsequent results. It dates back to 1875
(see [2, p. 295)), but is not so well-known today. A proof can be found in [1, p. 215].
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Theorem 1. et A be an n X n matrix. Then, for k=1,2,..., n, the coefficient
C,_p in the characteristic polynomial (1) is given by the sum of the k-rowed
principal minors of A.

For example, the characteristic polynomial of the matrix B of the previous
example is P(A) =M —c,A\*+c,A—c,, where ¢,=1+5+9=15 ¢, = -3+
(—=3)+(—12)= —18, and ¢, = 0. Thus, P(A) = A> — 15A* — 18A.

Theorem 1 does not usually provide an efficient way to compute the characteris-
tic polynomial of A; computing det(A]— A) directly generally requires fewer
operations. When the rank of A is small, however, this theorem does provide an
efficient means of finding the eigenvalues of A.

It is well known (see, for example, [3, p. 202]) that the rank of A4 is equal to the
order of the largest nonzero minor of A—the largest square submatrix of A4 with
nonzero determinant. Since a k-rowed principal minor is a special type of minor,
the following theorem follows immediately from this result.

Theorem 2. et A be an n X n matrix. Then, the order of the largest nonzero
k-rowed principal minor of A is less than or equal to the rank of A.

It follows from Theorems 1 and 2 that if A4 is an # X 2 matrix and the rank of A
is 7, then c,_, =0 for &> r. Thus, the characteristic polynomial of such a matrix
has the form

P(A) =M —c, AN e, AT (=1) e, AT

n—1

= /\”""()\" —C, AT Hc, N TR () "c,,_,.)
and we obtain the following result.

Corollary. Let A be an n X n matrix with vank r. Then, all nonzero eigenvalues
of A are among the zevos of the polynomial

Q( A) = )\"_ CH—I )\"_1 + CII—Z Ar_z e +(_1)rcll—l" (2)

wheve c,_,, fork=1,2,...,r, is given by the sum of the k-rowed principal minors
of A.

So, the exact eigenvalues of a matrix of rank 1 or 2 can be found by solving a
linear or quadratic equation. For example, the matrix B of the previous examples
has rank 2, and its two nonzero eigenvalues are the zeros of Q(A) = A* — 151 — 18,

The entries of the matrix B, when read from left to right and top to bottom, are
those of an arithmetic sequence with common difference equal to 1. Every matrix
whose entries form an arithmetic sequence has rank less than or equal to 2. (This
can be seen by subtracting the first row from each of the others, leading to a
row-reduced matrix with at most two nonzero rows.) Therefore, such matrices have
eigenvalues that can be easily found. For example, let

0 1 2 3

|4 5 6 7
=\ g 9 10 11
12 13 14 15
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Its entries form an arithmetic sequence, and H has rank 2. So, two of its eigenval-
ues are equal to 0 and, by the Corollary, the other two satisfy the quadratic equation
A% —30A — 80 = 0. Thus, the eigenvalues of H are 0, 0, 15 + Y305 , and 15 — V305 .

There i$ an easy way to generate additional examples to which the Corollary can
be applied: If the entries of an n X #n matrix A are the terms of a geometric
sequence, then its rank is 1 (unless all its entries are zero); if the entries of A are
consecutive terms of the Fibonacci sequence {0,1,1,2,3,5,8,...}, then its rank is 2
forall n > 2.

The results presented in this article can be used effectively in a linear algebra
class, not by presenting them as faits accomplis, but instead by having students
discover them for themselves. To accomplish this, an instructor can assign a
sequence of exercises, varying from the simple to the complex, that ask the student
to solve special cases, make conjectures about generalizations, and then prove the
conjectures. To be practical, this process requires the help of symbolic mathematics
software such as Mathematica (but only a very small subset of it), and only the very
best students will be able to solve all the exercises.

Here is a typical sequence of exercises that allows students to explore this
subject:

(i) Determine the eigenvalues of the 7 X n matrix with all entries 1, for n= 2, 3,
and 4. Make a conjecture for general #n. Do the same for a matrix with all
entries equal to k. Prove your conjectures. Prove that the rank of all these
matrices is one. Make a general statement about the nature of the eigenval-
ues of an 7 X n matrix of rank one. Prove this statement.

(ii) Find the eigenvalues of the 2X 2, 3 X3, and 4 X 4 matrices whose entries are
the nonnegative integers, listed in order. (The 4X4 case is the matrix H in
this article.) In each case, find the characteristic equation for the matrix.
Calculate the k-rowed principal minors of these matrices. Express the coeffi-
cients in each characteristic equation in terms of sums of these determinants.
Make a conjecture about the rank of an 7 X » matrix whose entries are the
nonnegative integers. Prove this conjecture. What form does the characteris-
tic equation of such a matrix take? How could you use determinants to
compute its coefficients?

(iii) Notice that the entries of each matrix in the preceding exercise form an
arithmetic sequence. Repeat this exercise for matrices whose entries are
those of the arithmetic sequence: a,a+ d,a+2d,..., for other values of a
and d.

(iv) Again, repeat this exercise, this time for matrices whose entries are those of
the Fibonacci sequence: 0,1,1,2,3,5,8,....

And so on. We have assigned some of these exercises as optional extra-credit
homework for students to work individually. However, the material presented in
this article might also be used for longer independent or cooperative study projects.
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