Approaches to the Formula for the nth Fibonacci Number
Russell Jay Hendel, Morris College, Sumter, SC 29150

In this capsule we advocate proving the same theorem in different courses. This
helps the undergraduate view mathematics as a unified whole with a variety of
techniques.

To illustrate, we review proofs of the equivalence of the two most common
definitions of the Fibonacci numbers (cf. [5] and [6]). There seems to be contro-
versy in the literature as to what the standard definition of the Fibonacci numbers
should be, particularly in regard to the initial values. We therefore follow the
standard definition of the Fibonacci Association [2]. Cogent arguments for using
alternate initial values may be found in [17]. For a recent text on the Fibonacci
numbers see [15].

Definition 1. [Fibonacci’s Recursion] The Fibonacci numbers are defined recur-
sively for integer n > 0 by

FO=O’ F1=1’ F1+2=F1+1+E1' (1)
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Definition 2. [Binet’s Formula] Alternatively we can define the Fibonacci num-
bers for integer n by

an_Bn
F = , 2
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are the two solutions of p(z) =z?—2z—1=0. Note that « + 8 =1 and a8 = —1,
facts that will be used in the following proofs.

We shall prove the equivalence of the two definitions, (1) and (2), using the basic
methods of five standard undergraduate courses.

Elementary Algebra. First note that « + 1 =« and 8 + 1 =82 Then
a”H—B”H a”—B” a"(a+1)—B”(B+l) an+2_Bn+2
—+ = =
a—f a—p a—p a—p

which demonstrates that (2) implies (1).
In the remaining courses we demonstrate that (1) implies (2).

b

Linear Algebra. Define matrices
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Standard computations show that

B—al| -« 1
and

. a" O

pofg 8]

Moreover, the characteristic polynomial of M is p(z) and a diagonal decomposi-
tion of M is M =PDP~'. Then Mv,=v,,,, and two routine inductions show that
v,=M""'v, and M"=PD"P~!. We conclude that v,=PD"~'P~'v,, which,
upon expansion, yields (2) in vector form.

Matrices frequently provide alternate elegant proofs of identities in Fibonacci
numbers [1], [7], [10]. Several recent undergraduate linear algebra texts that
develop the above approach are [13], [14], and [18].

Calculus II. Define the function

G(x)= Y Fx".

0<n<ew

Using (1) an easy induction shows F, <2" and consequently G(x) is absolutely
convergent for |x| < 1/2. Another use of (1) demonstrates that x(G +xG) =G —x.
This implies

X
G(x) = 1.

—X—X

Following [16], [17], or [3] we use a partial fraction decomposition and the formula
for geometric series. This yields

X 1 1 1
1-x—x2> a—-B\l—ax 1-Bx
1
a—p

L (a" - 1)

and (2) immediately follows. A recent undergraduate text advocating this approach
with generalizations is [9].

Number Theory. The method of characteristic equations, which, in the simplest
case, finds closed formulae by solving the characteristic equation and forming
linear combinations of powers of its roots, is the best known method of deriving (2)
from (1). An example of a standard undergraduate text in number theory, the
course where this method is traditionally presented, is [12].

Suppose the recursive sequence G, satisfies the recursion G, ,=aG, ,; + bG,.
We form the characteristic polynomial z* —az —b and let r; and r, be the two
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roots of z2—az —b =0. Then

_ (G, —nGo)ry — (G —r,Gy)ry

n

G

r,—n

In particular if we let a =1, b =1, G,=0, G, = 1, then the characteristic polyno-
mial is p(z) and we derive (2).

The proof presented in [12] uses manipulations. A more general approach [8]
can be developed, for any linear difference equation of order k& with constant
coefficients, by noting that a sufficient condition for the sequence r”, r complex, to
belong to the complex, k-dimensional, vector space of all sequences satisfying a
given difference equation, is that r is a root of the characteristic polynomial. If the
.characteristic polynomial has k& distinct roots then a closed formula for any point
in the space can be found by calculating its coordinates relative to the basis of
sequences r” where r varies over the roots of the characteristic polynomial. [8]
also gives a short but completely detailed development of the relationship between
characteristic polynomials, generating functions, and closed formulae for recur-
sions. Another good expository account of these relationships may be found in [16].

Complex Variables. Again, consider the complex analytic generating function
G(z)=z/(1 —z —z?). Let C, be the circle of radius 7> 2 around the origin. Let
C_,, C_g, and C, be the circles of radius 1/4 around —a, —f, and 0 respectively.

The residue theorem states that for n > 0

1 G(z) 1 G(z) G(z) G(z)
2ari fC n+1 dZ: (fc n+1 dz+‘[C_a Zn+1 dz+fC_B Zn+1 dZ

4 2mi\Jc, z

By the triangle inequality for integrals, as T goes to oo,

1 G(z)

— | —=7dz|<O(T™ ") —=0.
2mi /crz *

By the Cauchy integral formula for derivatives,

1 . G(z)  G™(0)

F.
2mi fc 2T T T "
Finally, by the Cauchy integral formula we have
G > a _1 n+1
——f —(—1) dz = Residue at —a = % and
2wide 2" (B—a)a”
1 G(Z) . B(_l)n+l
mj;‘_ﬁw dz = Residue at —8 = W

Combining the above with the facts that o« + 8 =1 and af = —1 we deduce (2).
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This elegant application of complex analysis [4] seems to have gone unnoticed in
the undergraduate textbook literature. For an application to tribonacci sequences,
whose generating functions contain cubic denominators, see [11].

In conclusion, we have illustrated, using definitions of the Fibonacci numbers,
how a variety of techniques can be used to derive the same theorem and provide
identical homework problems in superficially totally different courses. It is advo-
cated that instructors and undergraduate texts find similar mathematical “scenes”
for the itinerary of the touring undergraduate.

Note. Written while the author was affiliated with Dowling College.
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The Integral of x'/2, etc.
John H. Mathews, California State University Fullerton, Fullerton, CA 92634

In calculus we derive [§t?dt=(x3/3) by a limiting process involving Riemann
sums. Known formulas for summing X} _,k"™, where m is a positive integer, are
used in computing the limit. Using a similar technique we show that [f!/?dr =
(2x3/2/3). The method can be used to integrate f(¢)=¢?/9, where p and q are
positive integers.

For the integrand f(¢) =t!/?, the partition of 0 <7 <x is chosen to be

{ k2x }k=n
X = —
) k=0
(which involves k2 because g =2), and the corresponding function values are
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